Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroradiology ; 65(10): 1439-1445, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37247021

RESUMO

PURPOSE: Regorafenib is a multikinase inhibitor, approved as a preferred regimen for recurrent glioblastoma (rGB). Although its effects on prolonging survival could seem modest, it is still unclear whether a subset of patients, potentially identifiable by imaging biomarkers, might experience a more substantial positive effect. Our aim was to evaluate the potential value of magnetic resonance imaging-derived parameters as non-invasive biomarkers to predict response to regorafenib in patients with rGB. METHODS: 20 patients with rGB underwent conventional and advanced MRI at diagnosis (before surgery), at recurrence and at first follow-up (3 months) during regorafenib. Maximum relative cerebral blood volume (rCBVmax) value, intra-tumoral susceptibility signals (ITSS), apparent diffusion coefficient (ADC) values, and contrast-enhancing tumor volumes were tested for correlation with response to treatment, progression-free survival (PFS), and overall survival (OS). Response at first follow-up was assessed according to Response Assessment in Neuro-Oncology (RANO) criteria. RESULTS: 8/20 patients showed stable disease at first follow-up. rCBVmax values of the primary glioblastoma (before surgery) significantly correlated to treatment response; specifically, patients with stable disease displayed higher rCBVmax compared to progressive disease (p = 0.04, 2-group t test). Moreover, patients with stable disease showed longer PFS (p = 0.02, 2-group t test) and OS (p = 0.04, 2-group t test). ITSS, ADC values, and contrast-enhancing tumor volumes showed no correlation with treatment response, PFS nor OS. CONCLUSION: Our results suggest that rCBVmax of the glioblastoma at diagnosis could serve as a non-invasive biomarker of treatment response to regorafenib in patients with rGB.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Biomarcadores , Estudos Retrospectivos
2.
Biomedicines ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36830900

RESUMO

MRI is undoubtedly the cornerstone of brain tumor imaging, playing a key role in all phases of patient management, starting from diagnosis, through therapy planning, to treatment response and/or recurrence assessment. Currently, neuroimaging can describe morphologic and non-morphologic (functional, hemodynamic, metabolic, cellular, microstructural, and sometimes even genetic) characteristics of brain tumors, greatly contributing to diagnosis and follow-up. Knowing the technical aspects, strength and limits of each MR technique is crucial to correctly interpret MR brain studies and to address clinicians to the best treatment strategy. This article aimed to provide an overview of neuroimaging in the assessment of adult primary brain tumors. We started from the basilar role of conventional/morphological MR sequences, then analyzed, one by one, the non-morphological techniques, and finally highlighted future perspectives, such as radiomics and artificial intelligence.

3.
Cancers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37568606

RESUMO

MRI plays a key role in the evaluation of post-treatment changes, both in the immediate post-operative period and during follow-up. There are many different treatment's lines and many different neuroradiological findings according to the treatment chosen and the clinical timepoint at which MRI is performed. Structural MRI is often insufficient to correctly interpret and define treatment-related changes. For that, advanced MRI modalities, including perfusion and permeability imaging, diffusion tensor imaging, and magnetic resonance spectroscopy, are increasingly utilized in clinical practice to characterize treatment effects more comprehensively. This article aims to provide an overview of the role of advanced MRI modalities in the evaluation of treated glioblastomas. For a didactic purpose, we choose to divide the treatment history in three main timepoints: post-surgery, during Stupp (first-line treatment) and at recurrence (second-line treatment). For each, a brief introduction, a temporal subdivision (when useful) or a specific drug-related paragraph were provided. Finally, the current trends and application of radiomics and artificial intelligence (AI) in the evaluation of treated GB have been outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA