Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Appl Environ Microbiol ; 89(10): e0120423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37819079

RESUMO

Rodents are important reservoir hosts of pathogenic leptospires in the US Virgin Islands. Our previous work determined that trapped rodents were colonized with Leptospira borgpetersenii serogroup Ballum (n = 48) and/or Leptospira kirschneri serogroup Icterohaemorrhagiae (n = 3). In addition, nine rodents appeared to be colonized with a mixed population comprising more than one species/serogroup. The aim of this study was to validate this finding by characterizing clonal isolates derived from cultures of mixed species. Cultures of presumptive mixed species (designated LR1, LR5, LR37, LR57, LR60, LR61, LR68, LR70, and LR72) were propagated in different media including Hornsby-Alt-Nally (HAN) media, incubated at both 29℃ and 37℃, and T80/40/LH incubated at 29℃. Polyclonal reference antisera specific for serogroup Ballum and Icterohaemorrhagiae were used to enrich for different serogroups followed by subculture on agar plates. Individual colonies were then selected for genotyping and serotyping. Of the nine cultures of mixed species/serogroups, a single clonal isolate was separated in five of them: L. borgpetersenii serogroup Ballum in LR1, LR5, and LR37, and L. kirschneri serogroup Icterohaemorrhagiae in LR60 and LR72. In four of the cultures with mixed species (LR57, LR61, LR68, and LR70), clonal isolates of both L. borgpetersenii serogroup Ballum and L. kirschneri serogroup Icterohaemorrhagiae were recovered. Our results definitively establish that rodents can be colonized with more than one species/serogroup of Leptospira concurrently. The identification and characterization of multiple species/serogroups of Leptospira from individual reservoir hosts of infection are essential to understand the epidemiology and transmission of disease to both human and domestic animal populations.IMPORTANCEPathogenic Leptospira, the causative agent of human and animal leptospirosis, comprise a diverse genus of species/serogroups which are inherently difficult to isolate from mammalian hosts due to fastidious growth requirements. Molecular evidence has indicated that reservoir hosts of Leptospira may shed multiple species concurrently. However, evidence of this phenomena by culture has been lacking. Culture is definitive and is essential for comprehensive characterization of recovered isolates by high-resolution genome sequencing and serotyping. In this work, a protocol using recently developed novel media formulations, in conjunction with reference antisera, was developed and validated to demonstrate the recovery of multiple species/serogroups of pathogenic Leptospira from the same host. The identification and characterization of multiple species/serogroups of Leptospira from individual reservoir hosts of infection are essential to understand the epidemiology and transmission of disease to both human and domestic animal populations.


Assuntos
Leptospira , Leptospirose , Animais , Humanos , Sorogrupo , Roedores , Leptospira/genética , Leptospirose/veterinária , Animais Domésticos , Rim , Soros Imunes/genética
2.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511121

RESUMO

Staphylococcus pseudintermedius is the most common opportunistic pathogen in dogs and methicillin resistance (MRSP) has been identified as an emerging problem in canine pyoderma. Here, we evaluated the antimicrobial resistance (AMR) features and phylogeny of S. pseudintermedius isolated from canine pyoderma cases in Argentina (n = 29) and the United States (n = 29). 62% of isolates showed multi-drug resistance. The AMR genes found: mecA, blaZ, ermB, dfrG, catA, tetM, aac(6')-aph(2″), in addition to tetK and lnuA (only found in U.S. isolates). Two point mutations were detected: grlA(S80I)-gyrA(S84L), and grlA(D84N)-gyrA(S84L) in one U.S. isolate. A mutation in rpoB (H481N) was found in two isolates from Argentina. SCCmec type III, SCCmec type V, ΨSCCmec57395 were identified in the Argentinian isolates; and SCCmec type III, SCCmec type IVg, SCCmec type V, and SCCmec type VII variant in the U.S. cohort. Sequence type (ST) ST71 belonging to a dominant clone was found in isolates from both countries, and ST45 only in Argentinian isolates. This is the first study to comparatively analyze the population structure of canine pyoderma-associated S. pseudintermedius isolates in Argentina and in the U.S. It is important to maintain surveillance on S. pseudintermedius populations to monitor AMR and gain further understanding of its evolution and dissemination.


Assuntos
Doenças do Cão , Pioderma , Infecções Estafilocócicas , Cães , Animais , Estados Unidos/epidemiologia , Antibacterianos/farmacologia , Infecções Estafilocócicas/epidemiologia , Argentina , Farmacorresistência Bacteriana/genética , Genômica , Pioderma/veterinária , Testes de Sensibilidade Microbiana
3.
Foodborne Pathog Dis ; 19(3): 199-208, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989634

RESUMO

In August 2016, the Wisconsin Department of Health Services notified the U.S. Centers for Disease Control and Prevention of multidrug-resistant (MDR) Salmonella enterica serovar Heidelberg infections in people who reported contact with dairy calves. Federal and state partners investigated this to identify the source and scope of the outbreak and to prevent further illnesses. Cases were defined as human Salmonella Heidelberg infection caused by a strain that had one of seven pulsed-field gel electrophoresis (PFGE) patterns or was related by whole genome sequencing (WGS), with illness onset from January 1, 2015, through July 2, 2018. Patient exposure and calf purchase information was collected and analyzed; calves were traced back from the point of purchase. Isolates obtained from animal and environmental samples collected on-farm were supplied by veterinary diagnostic laboratories and compared with patient isolates using PFGE and WGS. Antimicrobial susceptibility testing by standardized broth microdilution was performed. Sixty-eight patients from 17 states were identified. Forty (63%) of 64 patients noted cattle contact before illness. Thirteen (33%) of 40 patients with exposure to calves reported that calves were sick or had died. Seven individuals purchased calves from a single Wisconsin livestock market. One hundred forty cattle from 14 states were infected with the outbreak strain. WGS indicated that human, cattle, and environmental isolates from the livestock market were genetically closely related. Most isolates (88%) had resistance or reduced susceptibility to antibiotics of ≥5 antibiotic classes. This resistance profile included first-line antibiotic treatments for patients with severe salmonellosis, including ampicillin, ceftriaxone, and ciprofloxacin. In this outbreak, MDR Salmonella Heidelberg likely spread from sick calves to humans, emphasizing the importance of illness surveillance in animal populations to prevent future spillover of this zoonotic disease.


Assuntos
Salmonella enterica , Animais , Antibacterianos/farmacologia , Bovinos , Surtos de Doenças/veterinária , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado , Humanos , Testes de Sensibilidade Microbiana , Salmonella , Estados Unidos/epidemiologia
4.
MMWR Morb Mortal Wkly Rep ; 67(15): 443-446, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29672479

RESUMO

In January 2017, CDC identified a cluster of Salmonella enterica serotype Newport infections with isolates sharing an indistinguishable pulsed-field gel electrophoresis (PFGE) pattern, JJPX01.0010 (pattern 10), through PulseNet, the national molecular subtyping network for foodborne disease surveillance. This report summarizes the investigation by CDC, state and local health and agriculture departments, and the U.S. Department of Agriculture's Food Safety and Inspection Service (USDA-FSIS) and discusses the possible role of dairy cows as a reservoir for strains of Salmonella that persistently cause human illness. This investigation combined epidemiologic and whole genome sequencing (WGS) data to link the outbreak to contaminated ground beef; dairy cows were hypothesized to be the ultimate source of Salmonella contamination.


Assuntos
Surtos de Doenças , Carne/microbiologia , Intoxicação Alimentar por Salmonella/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bovinos , Criança , Pré-Escolar , Feminino , Microbiologia de Alimentos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Salmonella enterica/genética , Salmonella enterica/isolamento & purificação , Estados Unidos/epidemiologia , Adulto Jovem
6.
Front Vet Sci ; 11: 1346713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784659

RESUMO

Equine leptospirosis can result in abortion, stillbirth, neonatal death, placentitis, and uveitis. Horses can also act as subclinical reservoir hosts of infection, which are characterized as asymptomatic carriers that persistently excrete leptospires and transmit disease. In this study, PCR and culture were used to assess urinary shedding of pathogenic Leptospira from 37 asymptomatic mares. Three asymptomatic mares, designated as H2, H8, and H9, were PCR-positive for lipL32, a gene specific for pathogenic species of Leptospira. One asymptomatic mare, H9, was culture-positive, and the recovered isolate was classified as L. kirschneri serogroup Australis serovar Rushan. DNA capture and enrichment of Leptospira genomic DNA from PCR-positive, culture-negative samples determined that asymptomatic mare H8 was also shedding L. kirschneri serogroup Australis, whereas asymptomatic mare H2 was shedding L. interrogans serogroup Icterohaemorrhagiae. Sera from all asymptomatic mares were tested by the microscopic agglutination test (MAT) and 35 of 37 (94.6%) were seropositive with titers ranging from 1:100 to 1:3200. In contrast to asymptomatic mares, mare H44 presented with acute spontaneous abortion and a serum MAT titer of 1:102,400 to L. interrogans serogroup Pomona serovar Pomona. Comparison of L. kirschneri serogroup Australis strain H9 with that of L. interrogans serogroup Pomona strain H44 in the hamster model of leptospirosis corroborated differences in virulence of strains. Since lipopolysaccharide (LPS) is a protective antigen in bacterin vaccines, the LPS of strain H9 (associated with subclinical carriage) was compared with strain H44 (associated with spontaneous abortion). This revealed different LPS profiles and immunoreactivity with reference antisera. It is essential to know what species and serovars of Leptospira are circulating in equine populations to design efficacious vaccines and diagnostic tests. Our results demonstrate that horses in the US can act as reservoir hosts of leptospirosis and shed diverse pathogenic Leptospira species via urine. This report also details the detection of L. kirschneri serogroup Australis serovar Rushan, a species and serotype of Leptospira, not previously reported in the US.

9.
BMC Res Notes ; 16(1): 19, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823518

RESUMO

Staphylococcus pseudintermedius is an opportunistic pathogen commonly associated with skin infections in dogs. Twenty-three methicillin-resistant S. pseudintermedius (MRSP) isolated in Argentina from dogs with pyoderma were analyzed using whole genome sequencing (WGS) and classified into sequence types (ST) by multilocus sequence typing (MLST) and staphylococcal chromosome cassette mec (SCCmec) types.Based on the WGS analysis, MLST, and SCCmec type results, we report for the first time in Argentina two MRSP strains, one each, belonging to ST71-SCCmec III and ST45-ΨSCCmec57395 from dogs with pyoderma. We also identified seven isolates with ST339, which had been previously reported in only two isolates in Argentina. Additionally, we identified ten MRSP isolates harboring variants of the SCCmec V found in S. aureus, seven SCCmec V (5C2&5) with two ccrC1 recombinases, and three SCCmec V (5C2) with one ccrC1 recombinase.Our findings provide important insights into the evolution and geographic spread of these hypervirulent dominant clones that threaten the health of our companion animals and represent a significant risk for zoonotic infections.


Assuntos
Doenças do Cão , Pioderma , Infecções Estafilocócicas , Cães , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Tipagem de Sequências Multilocus , Staphylococcus aureus , Argentina , Pioderma/veterinária , Cromossomos , Testes de Sensibilidade Microbiana
10.
Trop Med Infect Dis ; 8(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36977184

RESUMO

Leptospirosis is a worldwide zoonotic disease. Pathogenic leptospires colonize the renal tubules and genital tract of animals and are excreted via urine. Transmission occurs via direct contact or through contaminated water or soil. The microscopic agglutination test (MAT) is the gold standard for the serodiagnosis of leptospirosis. The present study aims to evaluate animal exposure to Leptospira in the U.S. and Puerto Rico during the period 2018-2020. The presence of antibodies against pathogenic Leptospira spp. was assessed with the MAT according to the standards of the World Organisation for Animal Health. A total of 568 sera were submitted for diagnostic, surveillance, or import/export testing from the U.S. and Puerto Rico. Seropositivity (≥1:100) was 51.8% (294/568) with agglutinating antibodies found in 115 (39.1%) cattle, 84 (28.6%) exotic animals, 38 (12.9%) horses, 22 (7.5%) goats, 15 (5.1%) dogs, 11 (3.7%) swine, and 9 (3.1%) sheep. The most detected serogroups were Australis, Grippotyphosa, and Ballum. The results showed that animals were exposed to serogroups/serovars not included in commercial bacterins such as Ballum, Bratislava (only in swine vaccine), and Tarassovi. Our findings suggest that more studies should include culture and concomitant genotyping to reduce animal disease and zoonotic risk through efficacious vaccine and diagnostic strategies.

11.
Front Microbiol ; 14: 1166908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333652

RESUMO

Introduction: Salmonella enterica is a major cause of foodborne illness in the United States. A multi-drug resistant (MDR) emergent Salmonella Infantis (ESI) with a megaplasmid (pESI) was first identified in Israel and Italy and subsequently reported worldwide. The ESI clone carrying an extended spectrum ß-lactamase blaCTX-M-65 on a pESI-like plasmid and a mutation in the gyrA gene has recently been found in the United States in poultry meat. Methods: We analyzed the phenotypic and genotypic antimicrobial resistance, genomics and phylogeny of 200 S. infantis isolates from animal diagnostic samples. Results: Of these, 33.5% were resistant to at least one antimicrobial and 19.5% were multi-drug resistant (MDR). Eleven isolates from different animal sources were phenotypically and genetically similar to the ESI clone. These isolates had a D87Y mutation in the gyrA gene conferring reduced susceptibility to ciprofloxacin and harbored a combination of 6-10 resistance genes: blaCTX-M-65, aac(3)-IVa, aadA1, aph(4)-Ia, aph(3')-Ia, floR, sul1, dfrA14, tetA, and fosA. These 11 isolates carried class I and class II integrons and three virulence genes: sinH, involved in adhesion and invasion, ybtQ and ybtP, associated with iron transport. These isolates were also closely related to each other (separated by 7 to 27 SNPs) and phylogenetically related to the ESI clone recently found in the U.S. Discussion: This dataset captured the emergence of the MDR ESI clone in multiple animal species and the first report of a pESI-like plasmid in isolates from horses in the U.S.

12.
Microorganisms ; 11(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37317256

RESUMO

Because they are difficult to culture, obtaining genomic information from Leptospira spp. is challenging, hindering the overall understanding of leptospirosis. We designed and validated a culture-independent DNA capture and enrichment system for obtaining Leptospira genomic information from complex human and animal samples. It can be utilized with a variety of complex sample types and diverse species as it was designed using the pan-genome of all known pathogenic Leptospira spp. This system significantly increases the proportion of Leptospira DNA contained within DNA extracts obtained from complex samples, oftentimes reaching >95% even when some estimated starting proportions were <1%. Sequencing enriched extracts results in genomic coverage similar to sequenced isolates, thereby enabling enriched complex extracts to be analyzed together with whole genome sequences from isolates, which facilitates robust species identification and high-resolution genotyping. The system is flexible and can be readily updated when new genomic information becomes available. Implementation of this DNA capture and enrichment system will improve efforts to obtain genomic data from unculturable Leptospira-positive human and animal samples. This, in turn, will lead to a better understanding of the overall genomic diversity and gene content of Leptospira spp. that cause leptospirosis, aiding epidemiology and the development of improved diagnostics and vaccines.

13.
Front Microbiol ; 13: 979790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406424

RESUMO

In the USA, Salmonella enterica subspecies enterica serovar Senftenberg is among the top five serovars isolated from food and the top 11 serovars isolated from clinically ill animals. Human infections are associated with exposure to farm environments or contaminated food. The objective of this study was to characterize S. Senftenberg isolates from production animals by analyzing phenotypic antimicrobial resistance profiles, genomic features and phylogeny. Salmonella Senftenberg isolates (n = 94) from 20 US states were selected from NVSL submissions (2014-2017), tested against 14 antimicrobial drugs, and resistance phenotypes determined. Resistance genotypes were determined using whole genome sequencing analysis with AMRFinder and the NCBI and ResFinder databases with ABRicate. Plasmids were detected using PlasmidFinder. Integrons were detected using IntFinder and manual alignment with reference genes. Multilocus-sequence-typing (MLST) was determined using ABRicate with PubMLST database, and phylogeny was determined using vSNP. Among 94 isolates, 60.6% were resistant to at least one antimicrobial and 39.4% showed multidrug resistance. The most prevalent resistance findings were for streptomycin (44.7%), tetracycline (42.6%), ampicillin (36.2%) and sulfisoxazole (32.9%). The most commonly found antimicrobial resistance genes were aac(6')-Iaa (100%), aph(3″)-Ib and aph(6)-Id (29.8%) for aminoglycosides, followed by bla TEM-1 (26.6%) for penicillins, sul1 (25.5%) and sul2 (23.4%) for sulfonamides and tetA (23.4%) for tetracyclines. Quinolone-resistant isolates presented mutations in gyrA and/or parC genes. Class 1 integrons were found in 37 isolates. Thirty-six plasmid types were identified among 77.7% of the isolates. Phylogenetic analysis identified two distinct lineages of S. Senftenberg that correlated with the MLST results. Isolates were classified into two distinct sequence types (ST): ST14 (97.9%) and ST 185 (2.1%). The diversity of this serotype suggests multiple introductions into animal populations from outside sources. This study provided antimicrobial susceptibility and genomic characteristics of S. Senftenberg clinical isolates from production animals in the USA during 2014 to 2017. This study will serve as a base for future studies focused on the phenotypic and molecular antimicrobial characterization of S. Senftenberg isolates in animals. Monitoring of antimicrobial resistance to detect emergence of multidrug-resistant strains is critical.

14.
Front Vet Sci ; 9: 1064147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36819120

RESUMO

A 1-year-old female red panda started showing symptoms of illness, including lethargy, anorexia, abdominal discomfort, and vomiting, shortly after transfer to a new zoo. Serum was tested for leptospirosis using the microscopic agglutination test, and a titer of 1:25,600 to serogroup Grippotyphosa was detected. Antimicrobial treatment with doxycycline was initiated. After completion of treatment and resolution of clinical symptoms, a urine sample was collected to ensure clearance of leptospires and cessation of urinary shedding prior to co-housing with other red pandas. A repeat serum sample taken 13 days later had a lower titer of 1:6,400 to serogroup Grippotyphosa. A sample of the animal's urine was cultured in HAN media and was culture positive for Leptospira. The recovered isolate was completely characterized by whole genome sequencing and serotyping with reference antisera, and the isolate was classified as Leptospira kirschneri serogroup Grippotyphosa serovar Grippotyphosa strain RedPanda1.

15.
Front Vet Sci ; 9: 848664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464389

RESUMO

Leptospirosis is a global zoonotic disease that causes significant morbidity and mortality in human and animal populations. Leptospira interrogans is a leading cause of human disease, and L. borgpetersenii is a leading cause of animal disease. Cattle are reservoir hosts of L. borgpetersenii serovar Hardjo, which is transmitted via urine, semen, and uterine discharges resulting in abortion and poor reproductive performance. Bovine bacterin vaccines can only protect against those serovars included in vaccine formulations and typically include serovar Hardjo among others. Genotyping and serotyping represent two different and unique methods for classifying leptospires that do not always correlate well; comprehensive characterization using either method requires recovery of isolates from infected animals. In this study, we report for the first time, isolation of L. borgpetersenii serovar Tarassovi from the urine of a dairy cow in the U.S. The classification of the isolate, designated strain MN900, was confirmed by whole-genome sequencing, serotyping with reference antisera and monoclonal antibodies, Matrix Assisted Laser Desorption/Ionization (MALDI), and immunoblotting with reference antisera. Strain MN900 was excreted in urine samples for 18 weeks even as the cow was seronegative for serovar Tarassovi. Strain MN900 has an unusual morphology since it is not as motile as other leptospires and lacks hooked ends. Serovar Tarassovi is not included in U.S. bacterin vaccines. These results demonstrate the importance of culture and concomitant genotyping and serotyping to accurately classify leptospires, and as required to design efficacious vaccine and diagnostic strategies to not only limit animal disease but reduce zoonotic risk.

16.
Front Vet Sci ; 9: 1025282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467637

RESUMO

Leptospirosis is one of the most common zoonotic diseases in the world and endemic in the Caribbean Islands. Bovine leptospirosis is an important reproductive disease. Globally, cattle are recognized as a reservoir host for L. borgpetersenii serovar Hardjo, which is transmitted via urine, semen, and uterine discharges, and can result in abortion and poor reproductive performance. The dairy industry in Puerto Rico comprises up to 25% of agriculture-related income and is historically the most financially important agricultural commodity on the island. In this study, we report the isolation of two different pathogenic Leptospira species, from two different serogroups, from urine samples collected from dairy cows in Puerto Rico: L. borgpetersenii serogroup Sejroe serovar Hardjo and L. santarosai serogroup Pyrogenes. Recovered isolates were classified using whole-genome sequencing, serotyping with reference antisera and monoclonal antibodies, and immunoblotting. These results demonstrate that dairy herds in Puerto Rico can be concurrently infected with more than one species and serovar of Leptospira, and that bacterin vaccines and serologic diagnostics should account for this when applying intervention and diagnostic strategies.

17.
Sci Rep ; 12(1): 1132, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064157

RESUMO

Leptospirosis is a global zoonotic disease caused by pathogenic bacteria of the genus Leptospira. We sought to determine if rodents in U.S. Virgin Islands (USVI) are carriers of Leptospira. In total, 140 rodents were sampled, including 112 Mus musculus and 28 Rattus rattus. A positive carrier status was identified for 64/140 (45.7%); 49 (35.0%) were positive by dark-field microscopy, 60 (42.9%) by culture, 63 (45.0%) by fluorescent antibody testing, and 61 (43.6%) by real-time polymerase chain reaction (rtPCR). Molecular typing indicated that 48 isolates were L. borgpetersenii and 3 were L. kirschneri; the remaining nine comprised mixed species. In the single culture-negative sample that was rtPCR positive, genotyping directly from the kidney identified L. interrogans. Serotyping of L. borgpetersenii isolates identified serogroup Ballum and L. kirschneri isolates as serogroup Icterohaemorrhagiae. These results demonstrate that rodents are significant Leptospira carriers and adds to understanding the ecoepidemiology of leptospirosis in USVI.


Assuntos
Portador Sadio/epidemiologia , Reservatórios de Doenças/microbiologia , Leptospira/isolamento & purificação , Leptospirose/veterinária , Doenças dos Roedores/epidemiologia , Animais , Portador Sadio/diagnóstico , Portador Sadio/microbiologia , Portador Sadio/transmissão , Feminino , Humanos , Leptospira/genética , Leptospirose/epidemiologia , Leptospirose/microbiologia , Leptospirose/transmissão , Masculino , Camundongos , Tipagem Molecular , Saúde Pública , Ratos , Doenças dos Roedores/diagnóstico , Doenças dos Roedores/microbiologia , Doenças dos Roedores/transmissão , Ilhas Virgens Americanas/epidemiologia , Zoonoses
18.
PLoS One ; 16(9): e0249617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34547028

RESUMO

Salmonella enterica subspecies enterica serotype Dublin is a host-adapted serotype in cattle, associated with enteritis and systemic disease. The primary clinical manifestation of Salmonella Dublin infection in cattle, especially calves, is respiratory disease. While rare in humans, it can cause severe illness, including bacteremia, with hospitalization and death. In the United States, S. Dublin has become one of the most multidrug-resistant serotypes. The objective of this study was to characterize S. Dublin isolates from sick cattle by analyzing phenotypic and genotypic antimicrobial resistance (AMR) profiles, the presence of plasmids, and phylogenetic relationships. S. Dublin isolates (n = 140) were selected from submissions to the NVSL for Salmonella serotyping (2014-2017) from 21 states. Isolates were tested for susceptibility against 14 class-representative antimicrobial drugs. Resistance profiles were determined using the ABRicate with Resfinder and NCBI databases, AMRFinder and PointFinder. Plasmids were detected using ABRicate with PlasmidFinder. Phylogeny was determined using vSNP. We found 98% of the isolates were resistant to more than 4 antimicrobials. Only 1 isolate was pan-susceptible and had no predicted AMR genes. All S. Dublin isolates were susceptible to azithromycin and meropenem. They showed 96% resistance to sulfonamides, 97% to tetracyclines, 95% to aminoglycosides and 85% to beta-lactams. The most common AMR genes were: sulf2 and tetA (98.6%), aph(6)-Id (97.9%), aph(3'')-Ib, (97.1%), floR (94.3%), and blaCMY-2 (85.7%). All quinolone resistant isolates presented mutations in gyrA. Ten plasmid types were identified among all isolates with IncA/C2, IncX1, and IncFII(S) being the most frequent. The S. Dublin isolates show low genomic genetic diversity. This study provided antimicrobial susceptibility and genomic insight into S. Dublin clinical isolates from cattle in the U.S. Further sequence analysis integrating food and human origin S. Dublin isolates may provide valuable insight on increased virulence observed in humans.


Assuntos
Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Salmonelose Animal/microbiologia , Salmonella/efeitos dos fármacos , Salmonella/genética , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Mutação Puntual , Salmonella/isolamento & purificação , Estados Unidos
19.
Trop Med Infect Dis ; 6(2)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073665

RESUMO

From 2019-2020, the Virgin Islands Department of Health (VIDOH) investigated potential animal reservoirs of Leptospira spp., the pathogenic bacteria that cause leptospirosis. We examined Leptospira exposure and carriage in livestock on the island of St. Croix, United States Virgin Islands (USVI). We utilized the microscopic agglutination test (MAT) to evaluate the sera, and the fluorescent antibody test (FAT), real time polymerase chain reaction (rt-PCR), and bacterial culture to evaluate urine specimens from livestock (n = 126): 28 cattle, 19 goats, 46 pigs, and 33 sheep. Seropositivity was 37.6% (47/125) with agglutinating antibodies to the following serogroups identified: Australis, Djasiman, Icterohaemorrhagiae, Ballum, Sejroe, Cynopteri, Autumnalis, Hebdomadis, Pomona, Canicola, Grippotyphosa, and Pyrogenes. Urine from 4 animals (4.0%, 4/101) was positive by rt-PCR for lipL32: 2 sheep, 1 goat, and 1 bull. Sequencing of secY amplicons identified L. interrogans in 1 sheep and 1 bull. Livestock in USVI harbor pathogenic Leptospira bacteria and could play a role in the zoonotic cycle of leptospirosis.

20.
PLoS Negl Trop Dis ; 15(11): e0009859, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780473

RESUMO

During 2019-2020, the Virgin Islands Department of Health investigated potential animal reservoirs of Leptospira spp., the bacteria that cause leptospirosis. In this cross-sectional study, we investigated Leptospira spp. exposure and carriage in the small Indian mongoose (Urva auropunctata, syn: Herpestes auropunctatus), an invasive animal species. This study was conducted across the three main islands of the U.S. Virgin Islands (USVI), which are St. Croix, St. Thomas, and St. John. We used the microscopic agglutination test (MAT), fluorescent antibody test (FAT), real-time polymerase chain reaction (lipl32 rt-PCR), and bacterial culture to evaluate serum and kidney specimens and compared the sensitivity, specificity, positive predictive value, and negative predictive value of these laboratory methods. Mongooses (n = 274) were live-trapped at 31 field sites in ten regions across USVI and humanely euthanized for Leptospira spp. testing. Bacterial isolates were sequenced and evaluated for species and phylogenetic analysis using the ppk gene. Anti-Leptospira spp. antibodies were detected in 34% (87/256) of mongooses. Reactions were observed with the following serogroups: Sejroe, Icterohaemorrhagiae, Pyrogenes, Mini, Cynopteri, Australis, Hebdomadis, Autumnalis, Mankarso, Pomona, and Ballum. Of the kidney specimens examined, 5.8% (16/270) were FAT-positive, 10% (27/274) were culture-positive, and 12.4% (34/274) were positive by rt-PCR. Of the Leptospira spp. isolated from mongooses, 25 were L. borgpetersenii, one was L. interrogans, and one was L. kirschneri. Positive predictive values of FAT and rt-PCR testing for predicting successful isolation of Leptospira by culture were 88% and 65%, respectively. The isolation and identification of Leptospira spp. in mongooses highlights the potential role of mongooses as a wildlife reservoir of leptospirosis; mongooses could be a source of Leptospira spp. infections for other wildlife, domestic animals, and humans.


Assuntos
Reservatórios de Doenças/microbiologia , Herpestidae/microbiologia , Leptospira/isolamento & purificação , Testes de Aglutinação , Animais , Estudos Transversais , Herpestidae/fisiologia , Humanos , Espécies Introduzidas/estatística & dados numéricos , Rim/microbiologia , Leptospira/genética , Leptospira/imunologia , Leptospirose/microbiologia , Leptospirose/transmissão , Filogenia , Ilhas Virgens Americanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA