Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(4): e22882, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943402

RESUMO

Physical inactivity is one of the leading causes of chronic metabolic disease including obesity. Increasing physical activity (PA) has been shown to improve cardiometabolic and musculoskeletal health and to be associated with a distinct gut microbiota composition in trained athletes. However, the impact of PA on the gut microbiota is inconclusive for individuals performing PA in their day-to-day life. This study examined the role of PA and hand-grip strength on gut microbiome composition in middle-aged adults (40-65 years, n = 350) with normal (18.5-24.9 kg/m2 ) and overweight (25-29.9 kg/m2 ) body mass index (BMI). PA was recorded using the International Physical Activity Questionnaire, and hand-grip strength was measured using a dynamometer. Serum samples were assessed for lipidomics while DNA was extracted from fecal samples for microbiome analysis. Overweight participants showed a higher concentration of triacylglycerols, and lower concentrations of cholesteryl esters, sphingomyelin, and lyso-phosphotidylcholine lipids (p < .05) compared with those with normal BMI. Additionally, overweight participants had a lower abundance of the Oscillibacter genus (p < .05). The impact of PA duration on the gut microbiome was BMI dependent. In normal but not overweight participants, high PA duration showed greater relative abundance of commensal taxa such as Actinobacteria and Proteobacteria phyla, as well as Collinsella and Prevotella genera (p < .05). Furthermore, in males with normal BMI, a stronger grip strength was associated with a higher relative abundance of Faecalibacterium and F. prausnitzii (p < .05) compared with lower grip strength. Taken together, data suggest that BMI plays a significant role in modeling PA-induced changes in gut microbiota.


Assuntos
Índice de Massa Corporal , Exercício Físico , Microbioma Gastrointestinal , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exercício Físico/fisiologia , Obesidade/microbiologia , Sobrepeso/microbiologia , Força da Mão
2.
J Periodontal Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952262

RESUMO

AIMS: Oxidized low-density lipoprotein (oxLDL) is an important player in the course of metabolic inflammatory diseases. oxLDL was identified in the gingival crevicular fluid, denoting possible associations between oxLDL-induced inflammation and periodontal disease. The current investigation compared for the first-time direct effects of oxLDL to a cytokine cocktail of IL-1ß/TNF-ɑ/INF-γ on gingival mesenchymal stem cells' (G-MSCs) attributes. METHODS: Human third passage G-MSCs, isolated from connective tissue biopsies (n = 5) and characterized, were stimulated in three groups over 7 days: control group, cytokine group (IL-1ß[1 ng/mL], TNF-α[10 ng/mL], IFN-γ[100 ng/mL]), or oxLDL group (oxLDL [50 µg/mL]). Next Generation Sequencing and KEGG pathway enrichment analysis, stemness gene expression (NANOG/SOX2/OCT4A), cellular proliferation, colony-formation, multilinear potential, and altered intracellular pathways were investigated via histochemistry, next-generation sequencing, and RT-qPCR. RESULTS: G-MSCs exhibited all mesenchymal stem cells' characteristics. oxLDL group and cytokine group displayed no disparities in their stemness markers (p > .05). Next-generation-sequencing revealed altered expression of the TXNIP gene in response to oxLDL treatment compared with controls (p = .04). Following an initial boosting for up to 5 days by inflammatory stimuli, over 14 day, cellular counts [median count ×10-5 (Q25/Q75)] were utmost in control - [2.6607 (2.0804/4.5357)], followed by cytokine - [0.0433 (0.0026/1.4215)] and significantly lowered in the oxLDL group [0.0274 (0.0023/0.7290); p = .0047]. Osteogenic differentiation [median relative Ca2+ content(Q25/Q75)] was significantly lower in cytokine - [0.0066 (0.0052/0.0105)] compared to oxLDL - [0.0144 (0.0108/0.0216)] (p = .0133), with no differences notable for chondrogenic and adipogenic differentiation (p > .05). CONCLUSIONS: Within the current investigation's limitations, in contrast to cytokine-mediated inflammation, G-MSCs appear to be minimally responsive to oxLDL-mediated metabolic inflammation, with little negative effect on their differentiation attributes and significantly reduced cellular proliferation.

3.
Neuroendocrinology ; 113(7): 770-784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36646062

RESUMO

INTRODUCTION: The present study aimed to prove the metyrapone short test in a day clinic to be suitable for examining the integrity of the hypothalamic-pituitary-adrenal (HPA) axis in patients with suspected secondary and tertiary adrenal insufficiency and to identify novel effector molecules in acute stress response. METHODS: 44 patients were prospectively enrolled. Based on stimulated 11-deoxycortisol levels, patients were divided into a physiological (11-deoxycortisol ≥70 µg/L) and a pathological (11-deoxycortisol <70 µg/L) response group. Clinical follow-up examination was performed for validation. Ultraperformance liquid chromatography tandem mass spectrometry and a Fourier-transform-ion-cyclotron-resonance-mass-spectrometry were used for targeted and untargeted steroid metabolomics. RESULTS: At baseline, lower levels of cortisone (42 vs. 50 nmol/L, p = 0.048) and 17-OH-progesterone (0.6 vs. 1.2 nmol/L, p = 0.041) were noted in the pathological response group. After metyrapone administration, the pathological response group exhibited significantly lower 11-deoxycortisol (39.0 vs. 94.2 µg/L, p < 0.001) and ACTH (49 vs. 113 pg/mL, p < 0.001) concentrations as well as altered upstream metabolites. Untargeted metabolomics identified a total of 76 metabolites to be significantly up- or downregulated by metyrapone. A significant increase of the bile acid glycochenodeoxycholic acid (GCDC, p < 0.01) was detected in both groups with an even stronger increase in the physiological response group. After a mean follow-up of 17.2 months, an 11-deoxycortisol cut-off of 70 µg/L showed a high diagnostic performance (sensitivity 100%, specificity 96%). CONCLUSION: The metyrapone short test is safe and feasible in a day clinic setting. The alterations of the bile acid GCDC indicate that the liver might be involved in the acute stress response of the HPA axis.


Assuntos
Sistema Hipotálamo-Hipofisário , Metirapona , Humanos , Metirapona/farmacologia , Hidrocortisona , Cortodoxona , Hormônio Adrenocorticotrópico , Sistema Hipófise-Suprarrenal
4.
Eur J Epidemiol ; 37(10): 1087-1105, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36245062

RESUMO

The Food Chain Plus (FoCus) cohort was launched in 2011 for population-based research related to metabolic inflammation. To characterize this novel pathology in a comprehensive manner, data collection included multiple omics layers such as phenomics, microbiomics, metabolomics, genomics, and metagenomics as well as nutrition profiling, taste perception phenotyping and social network analysis. The cohort was set-up to represent a Northern German population of the Kiel region. Two-step recruitment included the randomised enrolment of participants via residents' registration offices and via the Obesity Outpatient Centre of the University Medical Center Schleswig-Holstein (UKSH). Hence, both a population- and metabolic inflammation- based cohort was created. In total, 1795 individuals were analysed at baseline. Baseline data collection took place between 2011 and 2014, including 63% females and 37% males with an age range of 18-83 years. The median age of all participants was 52.0 years [IQR: 42.5; 63.0 years] and the median baseline BMI in the study population was 27.7 kg/m2 [IQR: 23.7; 35.9 kg/m2]. In the baseline cohort, 14.1% of participants had type 2 diabetes mellitus, which was more prevalent in the subjects of the metabolic inflammation group (MIG; 31.8%). Follow-up for the assessment of disease progression, as well as the onset of new diseases with changes in subject's phenotype, diet or lifestyle factors is planned every 5 years. The first follow-up period was finished in 2020 and included 820 subjects.


Assuntos
Diabetes Mellitus Tipo 2 , Feminino , Humanos , Masculino , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Cadeia Alimentar , Inflamação , Obesidade/epidemiologia , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
5.
Stroke ; 50(2): 298-304, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30661490

RESUMO

Background and Purpose- We sought to explore the effect of genetic imbalance on functional outcome after ischemic stroke (IS). Methods- Copy number variation was identified in high-density single-nucleotide polymorphism microarray data of IS patients from the CADISP (Cervical Artery Dissection and Ischemic Stroke Patients) and SiGN (Stroke Genetics Network)/GISCOME (Genetics of Ischaemic Stroke Functional Outcome) networks. Genetic imbalance, defined as total number of protein-coding genes affected by copy number variations in an individual, was compared between patients with favorable (modified Rankin Scale score of 0-2) and unfavorable (modified Rankin Scale score of ≥3) outcome after 3 months. Subgroup analyses were confined to patients with imbalance affecting ohnologs-a class of dose-sensitive genes, or to those with imbalance not affecting ohnologs. The association of imbalance with outcome was analyzed by logistic regression analysis, adjusted for age, sex, stroke subtype, stroke severity, and ancestry. Results- The study sample comprised 816 CADISP patients (age 44.2±10.3 years) and 2498 SiGN/GISCOME patients (age 67.7±14.2 years). Outcome was unfavorable in 122 CADISP and 889 SiGN/GISCOME patients. Multivariate logistic regression analysis revealed that increased genetic imbalance was associated with less favorable outcome in both samples (CADISP: P=0.0007; odds ratio=0.89; 95% CI, 0.82-0.95 and SiGN/GISCOME: P=0.0036; odds ratio=0.94; 95% CI, 0.91-0.98). The association was independent of age, sex, stroke severity on admission, stroke subtype, and ancestry. On subgroup analysis, imbalance affecting ohnologs was associated with outcome (CADISP: odds ratio=0.88; 95% CI, 0.80-0.95 and SiGN/GISCOME: odds ratio=0.93; 95% CI, 0.89-0.98) whereas imbalance without ohnologs lacked such an association. Conclusions- Increased genetic imbalance was associated with poorer functional outcome after IS in both study populations. Subgroup analysis revealed that this association was driven by presence of ohnologs in the respective copy number variations, suggesting a causal role of the deleterious effects of genetic imbalance.


Assuntos
Isquemia Encefálica/genética , Dosagem de Genes , Adulto , Idoso , Isquemia Encefálica/reabilitação , Cromossomos Humanos/genética , Seguimentos , Duplicação Gênica , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Recuperação de Função Fisiológica , Índice de Gravidade de Doença
6.
Hum Genet ; 138(4): 375-388, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30852652

RESUMO

Metabolic coherence (MC) is a network-based approach to dimensionality reduction that can be used, for example, to interpret the joint expression of genes linked to human metabolism. Computationally, the derivation of 'transcriptomic' MC involves mapping of an individual gene expression profile onto a gene-centric network derived beforehand from a metabolic network (currently Recon2), followed by the determination of the connectivity of a particular, profile-specific subnetwork. The biological significance of MC has been exemplified previously in the context of human inflammatory bowel disease, among others, but the genetic architecture of this quantitative cellular trait is still unclear. Therefore, we performed a genome-wide association study (GWAS) of MC in the 1000 Genomes/ GEUVADIS data (n = 457) and identified a solitary genome-wide significant association with single nucleotide polymorphisms (SNPs) in the intronic region of the cadherin 18 (CDH18) gene on chromosome 5 (lead SNP: rs11744487, p = 1.2 × 10- 8). Cadherin 18 is a transmembrane protein involved in human neural development and cell-to-cell signaling. Notably, genetic variation at the CDH18 locus has been associated with metabolic syndrome-related traits before. Replication of our genome-wide significant GWAS result was successful in another population study from the Netherlands (BIOS, n = 2661; lead SNP), but failed in two additional studies (KORA, Germany, n = 711; GENOA, USA, n = 411). Besides sample size issues, we surmise that these discrepant findings may be attributable to technical differences. While 1000 Genomes/GEUVADIS and BIOS gene expression profiles were generated by RNA sequencing, the KORA and GENOA data were microarray-based. In addition to providing first evidence for a link between regional genetic variation and a metabolism-related characteristic of human transcriptomes, our findings highlight the benefit of adopting a systems biology-oriented approach to molecular data analysis.


Assuntos
Caderinas/genética , Loci Gênicos , Redes e Vias Metabólicas/genética , Metabolismo/genética , Transcriptoma , Estudos de Coortes , Feminino , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
9.
ACS Pharmacol Transl Sci ; 7(4): 991-1001, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38665607

RESUMO

Human gut microbiota are recognized as critical players in both metabolic disease and drug metabolism. However, medication-microbiota interactions in cardiometabolic diseases are not well understood. To gain a comprehensive understanding of how medication intake impacts the gut microbiota, we investigated the association of microbial structure with the use of single or multiple medications in a cohort of 134 middle-aged adults diagnosed with cardiometabolic disease, recruited from Alberta's Tomorrow Project. Predominant cardiometabolic prescription medication classes (12 total) were included in our analysis. Multivariate Association with Linear Model (MaAsLin2) was employed and results were corrected for age, BMI, sex, and diet to evaluate the relationship between microbial features and single- or multimedication use. Highly individualized microbiota profiles were observed across participants, and increasing medication use was negatively correlated with α-diversity. A total of 46 associations were identified between microbial composition and single medications, exemplified by the depletion of Akkermansia muciniphila by ß-blockers and statins, and the enrichment of Escherichia/Shigella and depletion of Bacteroides xylanisolvens by metformin. Metagenomics prediction further indicated alterations in microbial functions associated with single medications such as the depletion of enzymes involved in energy metabolism encoded by Eggerthella lenta due to ß-blocker use. Specific dual medication combinations also had profound impacts, including the depletion of Romboutsia and Butyriciocccus by statin plus metformin. Together, these results show reductions in bacterial diversity as well as species and microbial functional potential associated with both single- and multimedication use in cardiometabolic disease.

10.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887323

RESUMO

The present study explores for the first time the effect of hyperbaric oxygen (HBO) on gingival mesenchymal stem cells' (G-MSCs) gene expression profile, intracellular pathway activation, pluripotency, and differentiation potential under an experimental inflammatory setup. G-MSCs were isolated from five healthy individuals (n = 5) and characterized. Single (24 h) or double (72 h) HBO stimulation (100% O2, 3 bar, 90 min) was performed under experimental inflammatory [IL-1ß (1 ng/mL)/TNF-α (10 ng/mL)/IFN-γ (100 ng/mL)] and non-inflammatory micro-environment. Next Generation Sequencing and KEGG pathway enrichment analysis, G-MSCs' pluripotency gene expression, Wnt-/ß-catenin pathway activation, proliferation, colony formation, and differentiation were investigated. G-MSCs demonstrated all mesenchymal stem/progenitor cells' characteristics. The beneficial effect of a single HBO stimulation was evident, with anti-inflammatory effects and induction of differentiation (TLL1, ID3, BHLHE40), proliferation/cell survival (BMF, ID3, TXNIP, PDK4, ABL2), migration (ABL2) and osteogenic differentiation (p < 0.05). A second HBO stimulation at 72 h had a detrimental effect, significantly increasing the inflammation-induced cellular stress and ROS accumulation through HMOX1, BHLHE40, and ARL4C amplification and pathway enrichment (p < 0.05). Results outline a positive short-term single HBO anti-inflammatory, regenerative, and differentiation stimulatory effect on G-MSCs. A second (72 h) stimulation is detrimental to the same properties. The current results could open new perspectives in the clinical application of short-termed HBO induction in G-MSCs-mediated periodontal reparative/regenerative mechanisms.


Assuntos
Oxigenoterapia Hiperbárica , Células-Tronco Mesenquimais , Humanos , Osteogênese , Oxigênio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Fatores Imunológicos/farmacologia , Anti-Inflamatórios/farmacologia , Metaloproteases Semelhantes a Toloide/metabolismo , Fatores de Ribosilação do ADP/metabolismo
11.
Front Genet ; 14: 1166972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485343

RESUMO

Objective: Most methods to detect copy number variation (CNV) have high false positive rates, especially for small CNVs and in real-life samples from clinical studies. In this study, we explored a novel scatterplot-based method to detect CNVs in microarray samples. Methods: Illumina SNP microarray data from 13,254 individuals were analyzed with scatterplots and by PennCNV. The data were analyzed without the prior exclusion of low-quality samples. For CNV scatterplot visualization, the median signal intensity of all SNPs located within a CNV region was plotted against the median signal intensity of the flanking genomic region. Since CNV causes loss or gain of signal intensities, carriers of different CNV alleles pop up in clusters. Moreover, SNPs within a deletion are not heterozygous, whereas heterozygous SNPs within a duplication show typical 1:2 signal distribution between the alleles. Scatterplot-based CNV calls were compared with standard results of PennCNV analysis. All discordant calls as well as a random selection of 100 concordant calls were individually analyzed by visual inspection after noise-reduction. Results: An algorithm for the automated scatterplot visualization of CNVs was developed and used to analyze six known CNV regions. Use of scatterplots and PennCNV yielded 1019 concordant and 108 discordant CNV calls. All concordant calls were evaluated as true CNV-findings. Among the 108 discordant calls, 7 were false positive findings by the scatterplot method, 80 were PennCNV false positives, and 21 were true CNVs detected by the scatterplot method, but missed by PennCNV (i.e., false negative findings). Conclusion: CNV visualization by scatterplots allows for a reliable and rapid detection of CNVs in large studies. This novel method may thus be used both to confirm the results of genome-wide CNV detection software and to identify known CNVs in hitherto untyped samples.

12.
J Adv Res ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37330047

RESUMO

INTRODUCTION: Clara cell 16-kDa protein (CC16) is an anti-inflammatory, immunomodulatory secreted pulmonary protein with reduced serum concentrations in obesity according to recent data. OBJECTIVE: Studies focused solely on bodyweight, which does not properly reflect obesity-associated implications of the metabolic and reno-cardio-vascular system. The purpose of this study was therefore to examine CC16 in a broad physiological context considering cardio-metabolic comorbidities of primary pulmonary diseases. METHODS: CC16 was quantified in serum samples in a subset of the FoCus (N = 497) and two weight loss intervention cohorts (N = 99) using ELISA. Correlation and general linear regression analyses were applied to assess CC16 effects of lifestyle, gut microbiota, disease occurrence and treatment strategies. Importance and intercorrelation of determinants were validated using random forest algorithms. RESULTS: CC16 A38G gene mutation, smoking and low microbial diversity significantly decreased CC16. Pre-menopausal female displayed lower CC16 compared to post-menopausal female and male participants. Biological age and uricosuric medications increased CC16 (all p < 0.01). Adjusted linear regression revealed CC16 lowering effects of high waist-to-hip ratio (est. -11.19 [-19.4; -2.97], p = 7.99 × 10-3), severe obesity (est. -2.58 [-4.33; -0.82], p = 4.14 × 10-3) and hypertension (est. -4.31 [-7.5; -1.12], p = 8.48 × 10-3). ACEi/ARB medication (p = 2.5 × 10-2) and chronic heart failure (est. 4.69 [1.37; 8.02], p = 5.91 × 10-3) presented increasing effects on CC16. Mild associations of CC16 were observed with blood pressure, HOMA-IR and NT-proBNP, but not manifest hyperlipidemia, type 2 diabetes, diet quality and dietary weight loss intervention. CONCLUSION: A role of metabolic and cardiovascular abnormalities in the regulation of CC16 and its modifiability by behavioral and pharmacological interventions is indicated. Alterations by ACEi/ARB and uricosurics could point towards regulatory axes comprising the renin-angiotensin-aldosterone system and purine metabolism. Findings altogether strengthen the importance of interactions among metabolism, heart and lungs.

13.
Sci Rep ; 12(1): 14935, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056109

RESUMO

Obesity and type 2 diabetes (T2D) show an increased risk for a severe COVID-19 disease. Treatment with DPP4 inhibitor (DPP4i) results in reduced mortality and better clinical outcome. Here, we aimed to identify potential mechanisms for the observed DPP4i effect in COVID-19. Comparing T2D subjects with and without DPP4i treatment, we identified a significant increase of the anti-inflammatory adipokine sFRP5 in relation to DPP4 inhibition. sFRP5 is a specific antagonist to Wnt5a, a glycopeptide secreted by adipose tissue macrophages acting pro-inflammatory in various diseases. We therefore examined sFRP5 levels in patients hospitalised for severe COVID-19 and found significant lower levels compared to healthy controls. Since sFRP5 might consequently be a molecular link for the beneficial effects of DPP4i in COVID-19, we further aimed to identify the exact source of sFRP5 in adipose tissue on cellular level. We therefore isolated pre-adipocytes, mature adipocytes and macrophages from adipose tissue biopsies and performed western-blotting. Results showed a sFRP5 expression specifically in mature adipocytes of subcutaneous and omental adipose tissue. In summary, our data suggest that DPP4i increase serum levels of anti-inflammatory sFRP5 which might be beneficial in COVID-19, reflecting a state of sFRP5 deficiency.


Assuntos
Tratamento Farmacológico da COVID-19 , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anti-Inflamatórios , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Proteínas do Olho/metabolismo , Humanos , Hipoglicemiantes
14.
Nutrients ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565847

RESUMO

Studies indicate that the intestinal microbiota influences general metabolic processes in humans, thereby modulating the risk of chronic diseases such as type 2 diabetes, allergy, cardiovascular disease, and colorectal cancer (CRC). Dietary factors are also directly related to chronic disease risk, and they affect the composition and function of the gut microbiota. Still, detailed knowledge on the relation between diet, the microbiota, and chronic disease risk is limited. The overarching aim of the HDHL-INTIMIC (INtesTInal MICrobiomics) knowledge platform is to foster studies on the microbiota, nutrition, and health by assembling available knowledge of the microbiota and of the other aspects (e.g., food science and metabolomics) that are relevant in the context of microbiome research. The goal is to make this information findable, accessible, interoperable, and reusable (FAIR) to the scientific community, and to share information with the various stakeholders. Through these efforts a network of transnational and multidisciplinary collaboration has emerged, which has contributed to further develop and increase the impact of microbiome research in human health. The roles of microbiota in early infancy, during ageing, and in subclinical and clinically manifested disease are identified as urgent areas of research in this knowledge platform.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Dieta , Alimentos , Humanos , Intestinos
15.
Nutrients ; 14(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35684151

RESUMO

BACKGROUND: Alongside metabolic diseases (esp. obesity), allergic disorders are becoming increasingly prevalent. Since both obesity and allergies are highly impacted by environmental determinants, with this study we assessed the potential link between metabolic implications and two distinct types of allergies. METHODS: Using cross-sectional data from the German FoCus cohort, n = 385 allergy cases, either hay fever (=type I allergy, n = 183) or contact allergy (=type IV allergy, n = 202) were compared to age- and sex-matched healthy control subjects (1:1 ratio, in total n = 770) regarding their metabolic phenotype, diet, physical activity, sleep, gut microbial composition, and serum metabolite profile using suitable BMI-adjusted models. RESULTS: Obesity and metabolic alterations were found significantly more prevalent in subjects with allergies. In fact, this relation was more pronounced in contact allergy than hay fever. Subsequent BMI-adjusted analysis reveals particular importance of co-occurring hyperlipidaemia for both allergy types. For contact allergy, we revealed a strong association to the dietary intake of poly-unsaturated fatty acids, particularly α-linolenic acid, as well as the enrichment of the corresponding metabolic pathway. For hay fever, there were no major associations to the diet but to a lower physical activity level, shorter duration of sleep, and an altered gut microbial composition. Finally, genetic predisposition for hyperlipidaemia was associated to both contact allergy and hay fever. CONCLUSIONS: Reflected by higher allergy prevalence, our findings indicate an impaired immune response in obesity and hyperlipidaemia, which is differentially regulated in type I and type IV allergies by an unfavourable lifestyle constellation and subsequent microbial and metabolic dysfunctions.


Assuntos
Hiperlipidemias , Hipersensibilidade Tardia , Hipersensibilidade , Rinite Alérgica Sazonal , Estudos Transversais , Ingestão de Alimentos , Humanos , Hiperlipidemias/epidemiologia , Hipersensibilidade/epidemiologia , Obesidade/epidemiologia , Rinite Alérgica Sazonal/epidemiologia , Comportamento Sedentário
16.
Front Immunol ; 13: 1037115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311771

RESUMO

Background: Clara cell 16 kDa protein (CC16) is a secretory protein primarily expressed in epithelial cells in the lungs. Previous studies show that CC16 exerts anti-inflammatory and immune-modulatory properties in both acute and chronic pulmonary diseases. However, despite the evidence of CC16's high biomarker potential, evaluation of its role in infectious diseases is yet very limited. Methods: Serum CC16 concentrations were measured by ELISA and assessed in two different types of severe infections. Using a case-control study design, patients treated for either severe SARS-CoV-2 or severe non-pulmonary sepsis infection were compared to age- and sex-matched healthy human subjects. Results: Serum CC16 was significantly increased in both types of infection (SARS-CoV-2: 96.22 ± 129.01 ng/ml vs. healthy controls: 14.05 ± 7.48 ng/ml, p = 0.022; sepsis: 35.37 ± 28.10 ng/ml vs. healthy controls: 15.25 ± 7.51 ng/ml, p = 0.032) but there were no distinct differences between infections with and without pulmonary focus (p = 0.089). Furthermore, CC16 serum levels were positively correlated to disease duration and inversely to the platelet count in severe SARS-CoV-2 infection. Conclusions: Increased CC16 serum levels in both SARS-CoV-2 and sepsis reinforce the high potential as a biomarker for epithelial cell damage and bronchoalveolar-blood barrier leakage in pulmonary as well as non-pulmonary infectious diseases.


Assuntos
COVID-19 , Doenças Transmissíveis , Sepse , Humanos , Biomarcadores , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Doenças Transmissíveis/metabolismo , Células Epiteliais/metabolismo , Relatório de Pesquisa , SARS-CoV-2 , Sepse/metabolismo , Uteroglobina/metabolismo
17.
Gut Microbes ; 14(1): 2057778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35435797

RESUMO

Recent rodent microbiome experiments suggest that besides Akkermansia, Parasutterella sp. are important in type 2 diabetes and obesity development. In the present translational human study, we aimed to characterize Parasutterella in our European cross-sectional FoCus cohort (n = 1,544) followed by validation of the major results in an independent Canadian cohort (n = 438). In addition, we examined Parasutterella abundance in response to a weight loss intervention (n = 55). Parasutterella was positively associated with BMI and type 2 diabetes independently of the reduced microbiome α/ß diversity and low-grade inflammation commonly found in obesity. Nutritional analysis revealed a positive association with the dietary intake of carbohydrates but not with fat or protein consumption. Out of 126 serum metabolites differentially detectable by untargeted HPLC-based MS-metabolomics, L-cysteine showed the strongest reduction in subjects with high Parasutterella abundance. This is of interest, since Parasutterella is a known high L-cysteine consumer and L-cysteine is known to improve blood glucose levels in rodents. Furthermore, metabolic network enrichment analysis identified an association of high Parasutterella abundance with the activation of the human fatty acid biosynthesis pathway suggesting a mechanism for body weight gain. This is supported by a significant reduction of the Parasutterella abundance during our weight loss intervention. Together, these data indicate a role for Parasutterella in human type 2 diabetes and obesity, whereby the link to L-cysteine might be relevant in type 2 diabetes development and the link to the fatty acid biosynthesis pathway for body weight gain in response to a carbohydrate-rich diet in obesity development.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Canadá , Estudos Transversais , Cisteína , Carboidratos da Dieta , Ácidos Graxos , Humanos , Obesidade , Redução de Peso
18.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836121

RESUMO

Within the last two decades tremendous efforts in biomedicine have been undertaken to understand the interplay of commensal bacteria living in and on our human body with our own human physiology. It became clear that (1) a high diversity especially of the microbial communities in the gut are important to preserve health and that (2) certain bacteria via nutrition-microbe-host metabolic axes are beneficially affecting various functions of the host, including metabolic control, energy balance and immune function. While a large set of evidence indicate a special role for small chain fatty acids (SCFA) in that context, recently also metabolites of amino acids (e.g., tryptophan and arginine) moved into scientific attention. Of interest, microbiome alterations are not only important in nutrition associated diseases like obesity and diabetes, but also in many chronic inflammatory, oncological and neurological abnormalities. From a clinician's point of view, it should be mentioned, that the microbiome is not only interesting to develop novel therapies, but also as a modifiable factor to improve efficiency of modern pharmaceutics, e.g., immune-therapeutics in oncology. However, so far, most data rely on animal experiments or human association studies, whereas controlled clinical intervention studies are spare. Hence, the translation of the knowledge of the last decades into clinical routine will be the challenge of microbiome based biomedical research for the next years. This review aims to provide examples for future clinical applications in various entities and to suggest bacterial species and/or microbial effector molecules as potential targets for intervention studies.


Assuntos
Doença Crônica , Microbiota , Pesquisa Translacional Biomédica/tendências , Animais , Metabolismo Energético , Microbioma Gastrointestinal , Humanos , Sistema Imunitário/microbiologia , Inflamação/microbiologia , Fenômenos Fisiológicos da Nutrição
19.
Nutrients ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35010887

RESUMO

Whether the gut microbiome in obesity is characterized by lower diversity and altered composition at the phylum or genus level may be more accurately investigated using high-throughput sequencing technologies. We conducted a systematic review in PubMed and Embase including 32 cross-sectional studies assessing the gut microbiome composition by high-throughput sequencing in obese and non-obese adults. A significantly lower alpha diversity (Shannon index) in obese versus non-obese adults was observed in nine out of 22 studies, and meta-analysis of seven studies revealed a non-significant mean difference (-0.06, 95% CI -0.24, 0.12, I2 = 81%). At the phylum level, significantly more Firmicutes and fewer Bacteroidetes in obese versus non-obese adults were observed in six out of seventeen, and in four out of eighteen studies, respectively. Meta-analyses of six studies revealed significantly higher Firmicutes (5.50, 95% 0.27, 10.73, I2 = 81%) and non-significantly lower Bacteroidetes (-4.79, 95% CI -10.77, 1.20, I2 = 86%). At the genus level, lower relative proportions of Bifidobacterium and Eggerthella and higher Acidaminococcus, Anaerococcus, Catenibacterium, Dialister, Dorea, Escherichia-Shigella, Eubacterium, Fusobacterium, Megasphera, Prevotella, Roseburia, Streptococcus, and Sutterella were found in obese versus non-obese adults. Although a proportion of studies found lower diversity and differences in gut microbiome composition in obese versus non-obese adults, the observed heterogeneity across studies precludes clear answers.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Obesidade/microbiologia , Bactérias/genética , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
20.
Cells ; 10(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943818

RESUMO

The present study explored the effects of ascorbic-acid (AA)/retinol and timed inflammation on the stemness, the regenerative potential, and the transcriptomics profile of gingival mesenchymal stem/progenitor cells' (G-MSCs). STRO-1 (mesenchymal stem cell marker) immuno-magnetically sorted G-MSCs were cultured in basic medium (control group), in basic medium with IL-1ß (1 ng/mL), TNF-α (10 ng/mL) and IFN-γ (100 ng/mL, inflammatory-medium), in basic medium with AA (250 µmol/L) and retinol (20 µmol/L) (AA/retinol group) or in inflammatory medium with AA/retinol (inflammatory/AA/retinol group; n = 5/group). The intracellular levels of phosphorylated and total ß-Catenin at 1 h, the expression of stemness genes over 7 days, the number of colony-forming units (CFUs) as well as the cellular proliferation aptitude over 14 days, and the G-MSCs' multilineage differentiation potential were assessed. Next-generation sequencing was undertaken to elaborate on up-/downregulated genes and altered intracellular pathways. G-MSCs demonstrated all mesenchymal stem/progenitor cells characteristics. Controlled inflammation with AA/retinol significantly elevated NANOG (p < 0.05). The AA/retinol-mediated reduction in intracellular phosphorylated ß-Catenin was restored through the effect of controlled inflammation (p < 0.05). Cellular proliferation was highest in the AA/retinol group (p < 0.05). AA/retinol counteracted the inflammation-mediated reduction in G-MSCs' clonogenic ability and CFUs. Amplified chondrogenic differentiation was observed in the inflammatory/AA/retinol group. At 1 and 3 days, the differentially expressed genes were associated with development, proliferation, and migration (FOS, EGR1, SGK1, CXCL5, SIPA1L2, TFPI2, KRATP1-5), survival (EGR1, SGK1, TMEM132A), differentiation and mineral absorption (FOS, EGR1, MT1E, KRTAP1-5, ASNS, PSAT1), inflammation and MHC-II antigen processing (PER1, CTSS, CD74) and intracellular pathway activation (FKBP5, ZNF404). Less as well as more genes were activated the longer the G-MSCs remained in the inflammatory medium or AA/retinol, respectively. Combined, current results point at possibly interesting interactions between controlled inflammation or AA/retinol affecting stemness, proliferation, and differentiation attributes of G-MSCs.


Assuntos
Ácido Ascórbico/farmacologia , Diferenciação Celular , Gengiva/patologia , Inflamação/patologia , Células-Tronco Mesenquimais/patologia , Transcriptoma/genética , Vitamina A/farmacologia , Adolescente , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ensaio de Unidades Formadoras de Colônias , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doadores de Tecidos , Transcriptoma/efeitos dos fármacos , Adulto Jovem , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA