Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 42: 47-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25951797

RESUMO

The lung must maintain a proper barrier between airspaces and fluid filled tissues in order to maintain lung fluid balance. Central to maintaining lung fluid balance are epithelial cells which create a barrier to water and solutes. The barrier function of these cells is mainly provided by tight junction proteins known as claudins. Epithelial barrier function varies depending on the different needs within the segments of the respiratory tree. In the lower airways, fluid is required to maintain mucociliary clearance, whereas in the terminal alveolar airspaces a thin layer of surfactant enriched fluid lowers surface tension to prevent airspace collapse and is critical for gas exchange. As the epithelial cells within the segments of the respiratory tree differ, the composition of claudins found in these epithelial cells is also different. Among these differences is claudin-18 which is uniquely expressed by the alveolar epithelial cells. Other claudins, notably claudin-4 and claudin-7, are more ubiquitously expressed throughout the respiratory epithelium. Claudin-5 is expressed by both pulmonary epithelial and endothelial cells. Based on in vitro and in vivo model systems and histologic analysis of lungs from human patients, roles for specific claudins in maintaining barrier function and protecting the lung from the effects of acute injury and disease are being identified. One surprising finding is that claudin-18 and claudin-4 control lung cell phenotype and inflammation beyond simply maintaining a selective paracellular permeability barrier. This suggests claudins have more nuanced roles for the control of airway and alveolar physiology in the healthy and diseased lung.


Assuntos
Claudinas/metabolismo , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Animais , Fibrose Cística/patologia , Fibrose Cística/fisiopatologia , Humanos , Mucosa Respiratória/citologia , Junções Íntimas/metabolismo
2.
Biochim Biophys Acta ; 1858(1): 57-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26449341

RESUMO

The mutation N188T in human connexin46 (hCx46) correlates with a congenital nuclear pulverulent cataract. This mutation is in the second extracellular loop, a domain involved in docking of gap junction hemichannels. To analyze the functional consequences of this mutation, we expressed hCx46N188T and the wild type (hCx46wt) in Xenopus oocytes and HeLa cells. In Xenopus oocytes, hemichannels formed by hCx46wt and hCx46N188T had similar electrical properties. Additionally, a Ca(2+) and La(3+) sensitive current was observed in HeLa cells expressing eGFP-labeled hCx46wt or eGFP-labeled hCx46N188T. These results suggest that the N188T mutation did not alter apparent expression and the membrane targeting of the protein. Cells expressing hCx46wt-eGFP formed gap junction plaques, but plaques formed by hCx46N188T were extremely rare. A reduced plaque formation was also found in cells cotransfected with hCx46N188T-eGFP and mCherry-labeled hCx46wt as well as in cocultured cells expressing hCx46N188T-eGFP and hCx46wt-mCherry. Dye transfer experiments in cells expressing hCx46N188T revealed a lower transfer rate than cells expressing hCx46wt. We postulate that the N188T mutation affects intercellular connexon docking. This hypothesis is supported by molecular modeling of hCx46 using the crystal structure of hCx26 as a template. The model indicated that N188 is important for hemichannel docking through formation of hydrogen bonds with the residues R180, T189 and D191 of the opposing hCx46. The results suggest that the N188T mutation hinders the docking of the connexons to form gap junction channels. Moreover, the finding that a glutamine substitution (hCx46N188Q) could not rescue the docking emphasizes the specific role of N188.


Assuntos
Conexinas/química , Junções Comunicantes/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Cátions Bivalentes , Conexinas/genética , Conexinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Junções Comunicantes/química , Junções Comunicantes/ultraestrutura , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Ligação de Hidrogênio , Transporte de Íons , Lantânio/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Vermelha Fluorescente
3.
Biochem J ; 466(3): 571-85, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25583071

RESUMO

Connexins are a family of transmembrane proteins that form gap junction channels. These proteins undergo both proteasomal and lysosomal degradation, mechanisms that serve to regulate connexin levels. Our previous work described CIP75 [connexin43 (Cx43)-interacting protein of 75 kDa], a protein involved in proteasomal degradation, as a novel Cx43-interacting protein. We have discovered two additional connexins, connexin40 (Cx40) and connexin45 (Cx45), that interact with CIP75. Nuclear magnetic resonance (NMR) analyses identified the direct interaction of the CIP75 UBA domain with the carboxyl-terminal (CT) domains of Cx40 and Cx45. Reduction in CIP75 by shRNA in HeLa cells expressing Cx40 or Cx45 resulted in increased levels of the connexins. Furthermore, treatment with trafficking inhibitors confirmed that both connexins undergo endoplasmic reticulum-associated degradation (ERAD), and that CIP75 preferentially interacts with the connexin proteins bound for proteasomal degradation from the ER. In addition, we have also discovered that CIP75 interacts with ER-localized Cx32 in a process that is likely mediated by Cx32 ubiquitination. Thus, we have identified novel interacting connexin proteins of CIP75, indicating a role for CIP75 in regulating the levels of connexins in general, through proteasomal degradation.


Assuntos
Conexina 43/química , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Animais , Galinhas , Células HeLa , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
Am J Physiol Lung Cell Mol Physiol ; 308(12): L1212-23, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25888574

RESUMO

Lung barrier dysfunction is a cardinal feature of the acute respiratory distress syndrome (ARDS). Alcohol abuse, which increases the risk of ARDS two- to fourfold, induces transforming growth factor (TGF)-ß1, which increases epithelial permeability and impairs granulocyte/macrophage colony-stimulating factor (GM-CSF)-dependent barrier integrity in experimental models. We hypothesized that the relative balance of GM-CSF and TGF-ß1 signaling regulates lung epithelial barrier function. GM-CSF and TGF-ß1 were tested separately and simultaneously for their effects on lung epithelial cell barrier function in vitro. TGF-ß1 alone caused an ∼ 25% decrease in transepithelial resistance (TER), increased paracellular flux, and was associated with projections perpendicular to tight junctions ("spikes") containing claudin-18 that colocalized with F-actin. In contrast, GM-CSF treatment induced an ∼ 20% increase in TER, decreased paracellular flux, and showed decreased colocalization of spike-associated claudin-18 with F-actin. When simultaneously administered to lung epithelial cells, GM-CSF antagonized the effects of TGF-ß1 on epithelial barrier function in cultured cells. Given this, GM-CSF and TGF-ß1 levels were measured in bronchoalveolar lavage (BAL) fluid from patients with ventilator-associated pneumonia and correlated with markers for pulmonary edema and patient outcome. In patient BAL fluid, protein markers of lung barrier dysfunction, serum α2-macroglobulin, and IgM levels were increased at lower ratios of GM-CSF/TGF-ß1. Critically, patients who survived had significantly higher GM-CSF/TGF-ß1 ratios than nonsurviving patients. This study provides experimental and clinical evidence that the relative balance between GM-CSF and TGF-ß1 signaling is a key regulator of lung epithelial barrier function. The GM-CSF/TGF-ß1 ratio in BAL fluid may provide a concentration-independent biomarker that can predict patient outcomes in ARDS.


Assuntos
Células Epiteliais/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pulmão/metabolismo , Fenômenos Fisiológicos Respiratórios , Fator de Crescimento Transformador beta1/metabolismo , Animais , Imunofluorescência , Humanos , Immunoblotting , Pulmão/citologia , Masculino , Ratos , Ratos Sprague-Dawley
6.
J Bioenerg Biomembr ; 45(1-2): 59-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23065326

RESUMO

The C-terminus (CT) of rCx46 consists of 186 residues (H230-I416). Recent studies showed that rCx46(28.2), truncated after H243, altered the formation of functional hemichannels when expressed in Xenopus oocytes, while rCx46(37.7), truncated after A333 formed gap junction hemichannels similarly to rCx46(wt). To analyze the role of the CT up to A333 in functional expression with cell imaging and dye-transfer techniques, different mutants were generated by C-terminal truncation between H243-A333, labeled with EGFP and expressed in HeLa cells. These rCx46 variants were characterized according to their compartmentalization in organelles, their presence in microscopic detectable vesicles and their ability to form gap junction plaques. rCx46 truncated after A311 (rCx46(35.3)) was compartmentalized, was found in vesicles and formed functional gap junction plaques similarly to rCx46(wt). With a truncation after P284 (rCx46(32.6)), the protein was not compartmentalized and the amount of vesicles containing the protein were reduced; however, functional gap junction plaque formation was not affected as compared to rCx46(35.3). rCx46(28.2) did not form functional gap junction plaques; it was not found in vesicles or in cellular compartments. Live-cell imaging and detection of annular junctions for rCx46(32.6) and rCx46(35.3) revealed that the truncation after P284 reduced the frequency of vesicle budding from gap junction plaques and the formation of annular junctions. These results suggest that the C-terminal region of rCx46 up to A311 (rCx46(35.3)) is necessary for its correct compartmentalization and internalization in the form of annular junctions, while the H230-P284 C-terminal region (rCx46(32.6)) is sufficient for the formation of dye coupled gap junction channels.


Assuntos
Conexinas/biossíntese , Junções Comunicantes/metabolismo , Expressão Gênica , Vesículas Secretórias/metabolismo , Animais , Conexinas/genética , Junções Comunicantes/genética , Células HeLa , Humanos , Oócitos , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Vesículas Secretórias/genética , Xenopus
7.
J Bioenerg Biomembr ; 45(4): 409-19, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23800832

RESUMO

Previous data showed that dipyridamole enhanced gap junction coupling in vascular endothelial and smooth muscle cell lines by a cAMP-dependent mechanism. The present study investigates the level at which dipyridamole affects gap junction coupling. In the GM-7373 endothelial cell line, scrape loading/dye transfer experiments revealed a rapid increase in gap junction coupling induced during the first 6 h of dipyridamole treatment, followed by a slow increase induced by further incubation. Immunostaining analyses showed that the rapid enhancement of gap junction coupling correlated with an increased amount of Cx43 gap junction plaques and a reduced amount of Cx43 containing vesicles, while the amount of Cx43 mRNA or protein was not changed during this period, as found by semiquantitative RT-PCR and Western blot. Additionally, brefeldin A did not block this short-term-induced enhancement of gap junction coupling. Along with the dipyridamole-induced long-term enhancement of gap junction coupling, the amount of Cx43 mRNA and protein additionally to the amount of Cx43 gap junction plaques were increased. Furthermore, the anti-Cx43 antibody detected only two bands at 42 kDa and 44 kDa in control cells and cells treated with dipyridamole for 6 h, while long-term dipyridamole-treated cells showed a third band at 46 kDa. We propose that a dipyridamole-induced cAMP synthesis increased gap junction coupling in the GM-7373 endothelial cell line at different levels: the short-term effect is related to already oligomerised connexins beyond the Golgi apparatus and the long-term effect involves new expression and synthesis as well as posttranslational modification of Cx43.


Assuntos
Conexina 43/metabolismo , Dipiridamol/farmacologia , Células Endoteliais/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , RNA Mensageiro/metabolismo , Células Cultivadas , Conexina 43/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Junções Comunicantes/metabolismo , Humanos , Fosforilação , RNA Mensageiro/genética
8.
J Exp Bot ; 64(18): 5569-86, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123251

RESUMO

Previous studies have shown that polyethylene glycol (PEG)-induced osmotic stress (OS) reduces cell-wall (CW) porosity and limits aluminium (Al) uptake by root tips of common bean (Phaseolus vulgaris L.). A subsequent transcriptomic study suggested that genes related to CW processes are involved in adjustment to OS. In this study, a proteomic and phosphoproteomic approach was applied to identify OS-induced protein regulation to further improve our understanding of how OS affects Al accumulation. Analysis of total soluble proteins in root tips indicated that, in total, 22 proteins were differentially regulated by OS; these proteins were functionally categorized. Seventy-seven per- cent of the total expressed proteins were involved in metabolic pathways, particularly of carbohydrate and amino acid metabolism. An analysis of the apoplastic proteome revealed that OS reduced the level of five proteins and increased that of seven proteins. Investigation of the total soluble phosphoproteome suggested that dehydrin responded to OS with an enhanced phosphorylation state without a change in abundance. A cellular immunolocalization analysis indicated that dehydrin was localized mainly in the CW. This suggests that dehydrin may play a major protective role in the OS-induced physical breakdown of the CW structure and thus maintenance of the reversibility of CW extensibility during recovery from OS. The proteomic and phosphoproteomic analyses provided novel insights into the complex mechanisms of OS-induced reduction of Al accumulation in the root tips of common bean and highlight a key role for modification of CW structure.


Assuntos
Pressão Osmótica , Phaseolus/fisiologia , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Eletroforese em Gel Bidimensional , Phaseolus/efeitos dos fármacos , Fosfoproteínas/análise , Proteínas de Plantas/análise , Raízes de Plantas/metabolismo , Polietilenoglicóis/farmacologia , Proteômica/métodos
9.
J Bioenerg Biomembr ; 44(5): 607-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22843197

RESUMO

Connexin46 (Cx46), together with Cx50, forms gap junction channels between lens fibers and participates in the lens pump-leak system, which is essential for the homeostasis of this avascular organ. Mutations in Cx50 and Cx46 correlate with cataracts, but the functional relationship between the mutations and cataract formation is not always clear. Recently, it was found that a mutation at the third position of hCx46 that substituted an aspartic acid residue with a tyrosine residue (hCx46D3Y) caused an autosomal dominant zonular pulverulent cataract. We expressed EGFP-labeled hCx46wt and hCx46D3Y in HeLa cells and found that the mutation did not affect the formation of gap junction plaques. Dye transfer experiments using Lucifer Yellow (LY) and ethidium bromide (EthBr) showed an increased degree of dye coupling between the cell pairs expressing hCx46D3Y in comparison to the cell pairs expressing hCx46wt. In Xenopus oocytes, two-electrode voltage-clamp experiments revealed that hCx46wt formed voltage-sensitive hemichannels. This was not observed in the oocytes expressing hCx46D3Y. The replacement of the aspartic acid residue at the third position by another negatively charged residue, glutamic acid, to generate the mutant hCx46D3E, restored the voltage sensitivity of the resultant hemichannels. Moreover, HeLa cell pairs expressing hCx46D3E and hCx46wt showed a similar degree of dye coupling. These results indicate that the negatively charged aspartic acid residue at the third position of the N-terminus of hCx46 could be involved in the determination of the degree of metabolite cell-to-cell coupling and is essential for the voltage sensitivity of the hCx46 hemichannels.


Assuntos
Catarata/metabolismo , Conexinas/metabolismo , Oftalmopatias Hereditárias/metabolismo , Junções Comunicantes/metabolismo , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Catarata/genética , Conexinas/genética , Etídio/farmacologia , Oftalmopatias Hereditárias/genética , Corantes Fluorescentes/farmacologia , Junções Comunicantes/genética , Células HeLa , Humanos , Isoquinolinas/farmacologia , Xenopus laevis
10.
Purinergic Signal ; 8(1): 71-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21956217

RESUMO

The expression and physiology of purine receptors of the human blood-brain barrier endothelial cells were characterised by application of molecular biological, gene-silencing and Ca(2+)-imaging techniques to hCMEC/D3 cells. Reverse transcription polymerase chain reaction showed the expression of the G-protein-coupled receptors P2Y(2)-, P2Y(6)-, P2Y(11)- as well as the ionotropic P2X(4)-, P2X(5)- and P2X(7)-receptors. Fura-2 ratiometry revealed that adenosine triphosphate (ATP) or uridine triphosphate (UTP) mediated a change in the intracellular Ca(2+) concentration ([Ca(2+)](i)) from 150 to 300 nM in single cells. The change in [Ca(2+)](i) corresponded to a fourfold to fivefold increase in the fluorescence intensity of Fluo-4, which was used for high-throughput experiments. Pharmacological dissection using different agonists [UTPγS, ATPγS, uridine diphosphate (UDP), adenosine diphosphate (ADP), BzATP, αß-meATP] and antagonist (MRS2578 or NF340) as well as inhibitors of intracellular mediators (U73122 and 2-APB) showed a PLC-IP(3) cascade-mediated Ca(2+) release, indicating that the nucleotide-induced Ca(2+) signal was mainly related to P2Y(2, 6 and 11) receptors. The gene silencing of the P2Y(2) receptor reduced the ATP- or UTP-induced Ca(2+) signal and suppressed the Ca(2+) signal mediated by P2Y(6) and P2Y(11) more specific agonists like UDP (P2Y(6)), BzATP (P2Y(11)) and ATPγS (P2Y(11)). This report identifies the P2Y(2) receptor subtype as the main purine receptor involved in Ca(2+) signalling of the hCMEC/D3 cells.

11.
J Bioenerg Biomembr ; 43(3): 311-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21523406

RESUMO

Whole-cell patch-clamp analysis revealed a resting membrane potential of -60 mV in primary osteoblasts and in the MG-63 osteoblast-like cells. Depolarization-induced action potentials were characterized by duration of 60 ms, a minimal peak-to-peak distance of 180 ms, a threshold value of -20 mV and a repolarization between the spikes to -45 mV. Expressed channels were characterized by application of voltage pulses between -150 mV and 90 mV in 10 mV steps, from a holding potential of -40 mV. Voltages below -60 mV induced an inward current. Depolarizing voltages above -30 mV evoked two currents: (a) a fast activated and inactivated inward current at voltages between -30 and 30 mV, and (b) a delayed-activated outward current that was induced by voltages above -30 mV. Electrophysiological and pharmacological parameters indicated that hyperpolarization activated strongly rectifying K(+) (K(ir)) channels, whereas depolarization activated tetrodotoxin sensitive voltage gated Na(+) (Na(v)) channels as well as delayed, slowly activated, non-inactivating, and tetraethylammonium sensitive voltage gated K(+) (K(v)) channels. In addition, RT-PCR showed expression of Na(v)1.3, Na(v)1.4, Na(v)1.5, Na(v)1.6, Na(v)1.7, and K(ir)2.1, K(ir)2.3, and K(ir)2.4 as well as K(v)2.1. We conclude that osteoblasts express channels that allow firing of action potentials.


Assuntos
Osteoblastos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Neoplasias Ósseas , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteossarcoma , Técnicas de Patch-Clamp , Canais de Potássio/biossíntese , Canais de Potássio/fisiologia , Canais de Sódio/biossíntese , Canais de Sódio/fisiologia
12.
Tissue Barriers ; 9(3): 1929786, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34107845

RESUMO

Tight junctions between lung alveolar epithelial cells maintain an air-liquid barrier necessary for healthy lung function. Previously, we found that rearrangement of tight junctions from a linear, cortical orientation into perpendicular protrusions (tight junction spikes) is associated with a decrease in alveolar barrier function, especially in alcoholic lung syndrome. Using quantitative super-resolution microscopy, we found that spikes in control cells were enriched for claudin-18 as compared with alcohol-exposed cells. Moreover, using an in situ method to measure barrier function, tight junction spikes were not associated with localized increases in permeability. This suggests that tight junction spikes have a regulatory role as opposed to causing a physical weakening of the epithelial barrier. We found that tight junction spikes form at cell-cell junctions oriented away from pools of ß-catenin associated with actin filaments, suggesting that adherens junctions determine the directionality of tight junction spikes. Dynamin-2 was associated with junctional claudin-18 and ZO-1, but showed little localization with ß-catenin and tight junction spikes. Treatment with Dynasore decreased the number of tight junction spikes/cell, increased tight junction spike length, and stimulated actin to redistribute to cortical tight junctions. By contrast, Dynole 34-2 and MiTMAB altered ß-catenin localization, and reduced tight junction spike length. These data suggest a novel role for dynamin-2 in tight junction spike formation by reorienting junction-associated actin. Moreover, the greater spatial separation of adherens and tight junctions in squamous alveolar epithelial cells as compared with columnar epithelial cells facilitates analysis of molecular regulation of the apical junctional complex.


Assuntos
Dinamina II , Junções Íntimas , beta Catenina , Junções Aderentes , Células Epiteliais Alveolares , Animais , Ratos
13.
Ann N Y Acad Sci ; 1397(1): 119-129, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28445614

RESUMO

Claudins provide tight junction barrier selectivity. The human CLDN5 gene contains a high-frequency single-nucleotide polymorphism (rs885985), where the G allele codes for glutamine (Q) and the A allele codes for an amber stop codon. Thus, these different CLDN5 alleles define nested open reading frames (ORFs) encoding claudin-5 proteins that are 303 or 218 amino acids in length. Interestingly, human claudin-16 and claudin-23 also have long ORFs. The long form of claudin-5 contrasts with the majority of claudin-5 proteins in the National Center for Biotechnology Information protein database, which are less than 220 amino acids in length. Screening of genotyped human lung tissue by immunoblot revealed only the 218 amino acid form of claudin-5 protein; the long-form claudin-5 protein was not detected. Moreover, when forcibly expressed in transfected cells, the long form of human claudin-5 was retained in intracellular compartments and did not localize to the plasma membrane, in contrast to the 218 amino acid form, which localized to intercellular junctions. This suggests that the 303 amino acid claudin-5 protein is rarely expressed, and, if so, is predicted to adversely affect cell function. Potential roles for upstream ORFs in regulating claudin-5 expression are also discussed.


Assuntos
Claudina-5/genética , Códon sem Sentido/genética , Glutamina/genética , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único , Alelos , Sequência de Aminoácidos , Sequência de Bases , Células CACO-2 , Membrana Celular/metabolismo , Claudina-5/metabolismo , Citoplasma/metabolismo , Frequência do Gene , Genótipo , Células HeLa , Humanos , Immunoblotting , Junções Intercelulares/metabolismo , Pulmão/metabolismo , Microscopia de Fluorescência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
14.
Data Brief ; 7: 93-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26958636

RESUMO

The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5-7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled "The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels" (Schadzek et al., 2015) [1].

15.
Nat Commun ; 7: 12276, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27452368

RESUMO

Claudins are tetraspan transmembrane tight-junction proteins that regulate epithelial barriers. In the distal airspaces of the lung, alveolar epithelial tight junctions are crucial to regulate airspace fluid. Chronic alcohol abuse weakens alveolar tight junctions, priming the lung for acute respiratory distress syndrome, a frequently lethal condition caused by airspace flooding. Here we demonstrate that in response to alcohol, increased claudin-5 paradoxically accompanies an increase in paracellular leak and rearrangement of alveolar tight junctions. Claudin-5 is necessary and sufficient to diminish alveolar epithelial barrier function by impairing the ability of claudin-18 to interact with a scaffold protein, zonula occludens 1 (ZO-1), demonstrating that one claudin affects the ability of another claudin to interact with the tight-junction scaffold. Critically, a claudin-5 peptide mimetic reverses the deleterious effects of alcohol on alveolar barrier function. Thus, claudin controlled claudin-scaffold protein interactions are a novel target to regulate tight-junction permeability.


Assuntos
Claudina-5/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Potenciais de Ação/efeitos dos fármacos , Álcoois/toxicidade , Animais , Claudina-5/química , Vesículas Citoplasmáticas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Masculino , Fusão de Membrana , Peptídeos/metabolismo , Permeabilidade , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Alvéolos Pulmonares/patologia , Ratos Sprague-Dawley , Solubilidade , Junções Íntimas/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Tissue Barriers ; 3(1-2): e982424, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25838984

RESUMO

NF-κB (p50/p65) is the best characterized transcription factor known to regulate cell responses to inflammation. However, NF-κB is also constitutively expressed. We used inhibitors of the classical NF-κB signaling pathway to determine whether this transcription factor has a role in regulating alveolar epithelial tight junctions. Primary rat type II alveolar epithelial cells were isolated and cultured on Transwell permeable supports coated with collagen for 5 d to generate a model type I cell monolayer. Treatment of alveolar epithelial monolayers overnight with one of 2 different IκB kinase inhibitors (BAY 11-7082 or BMS-345541) resulted in a dose-dependent decrease in TER at concentrations that did not affect cell viability. In response to BMS-345541 treatment there was an increase in total claudin-4 and claudin-5 along with a decrease in claudin-18, as determined by immunoblot. However, there was little effect on the total amount of cell-associated claudin-7, occludin, junctional adhesion molecule A (JAM-A), zonula occludens (ZO)-1 or ZO-2. Moreover, treatment with BMS-345541 resulted in altered tight junction morphology as assessed by immunofluorescence microscopy. Cells treated with BMS-345541 had an increase in claudin-18 containing projections emanating from tight junctions ("spikes") that were less prominent in control cells. There also were several areas of cell-cell contact which lacked ZO-1 and ZO-2 localization as well as rearrangements to the actin cytoskeleton in response to BMS-345541. Consistent with an anti-inflammatory effect, BMS-345541 antagonized the deleterious effects of lipopolysaccharide (LPS) on alveolar epithelial barrier function. However, BMS-345541 also inhibited the ability of GM-CSF to increase alveolar epithelial TER. These data suggest a dual role for NF-κB in regulating alveolar barrier function and that constitutive NF-κB function is required for the integrity of alveolar epithelial tight junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA