Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 19(8): 1413-24, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20080937

RESUMO

A new type of congenital disorders of glycosylation, designated CDG-Ip, is caused by the deficiency of GDP-Man:Man3GlcNAc2-PP-dolichol-alpha1,2-mannosyltransferase, encoded by the human ortholog of ALG11 from yeast. The patient presented with a multisystemic disorder characterized by muscular hypotonia, seizures, developmental retardation and death at the age of 2 years. The isoelectric focusing pattern of the patient's serum transferrin showed the partial loss of complete N-glycan side chains, which is a characteristic sign for CDG-I. Analysis of dolichol-linked oligosaccharides in patient-derived fibroblasts revealed an accumulation of Man3GlcNAc2-PP-dolichol and Man4GlcNAc2-PP-dolichol. Determination of mannosyltransferase activities of early steps of lipid-linked oligosaccharide biosynthesis in fibroblasts indicated that the patient was deficient in elongating Man3GlcNAc2-PP-dolichol. These findings gave rise to genetic analysis of the hALG11 cDNA, in which homozygosity for mutation c.T257C (p.L86S) was identified. Verification of the mutation as a primary cause for the genetic defect was proved by retroviral expression of human wild-type and mutated ALG11 cDNA in patient-derived fibroblasts as well as using a yeast alg11 deletion strain as a heterologous expression system for hALG11 variants. Immunofluorescence examinations combined with western blotting showed no differences of intracellular localization or expression of ALG11 between control and patient fibroblasts, respectively, indicating no mislocalization or degradation of the mutated transferase.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Retículo Endoplasmático/enzimologia , Manosiltransferases/deficiência , Sequência de Aminoácidos , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Linhagem Celular , Células Cultivadas , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Fibroblastos/metabolismo , Glucanos/metabolismo , Glicosilação , Humanos , Lactente , Manosiltransferases/química , Manosiltransferases/genética , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência
2.
Biochem J ; 426(2): 205-17, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-19929855

RESUMO

The biosynthesis of asparagine-linked glycans occurs in an evolutionarily conserved manner with the assembly of the unique lipid-linked oligosaccharide precursor Glc3Man9GlcNAc2-PP-Dol at the ER (endoplasmic reticulum). In the present study we characterize Alg11 from yeast as a mannosyltransferase catalysing the sequential transfer of two alpha1,2-linked mannose residues from GDP-mannose to Man3GlcNAc2-PP-Dol and subsequently to Man4GlcNAc2-PP-Dol forming the Man5GlcNAc2-PP-Dol intermediate at the cytosolic side of the ER before flipping to the luminal side. Alg11 is predicted to contain three hydrophobic transmembrane-spanning helices. Using Alg11 topology reporter fusion constructs, we show that only the N-terminal domain fulfils this criterion. Surprisingly, this domain can be deleted without disturbing glycosyltransferase function and membrane association, indicating also that the other two hydrophobic domains contribute to ER localization, but in a non-transmembrane manner. By site-directed mutagenesis we investigated amino acids important for transferase activity. We demonstrate that the first glutamate residue in the EX7E motif, conserved in a variety of glycosyltransferases, is more critical than the second, and loss of Alg11 function occurs only when both glutamate residues are exchanged, or when the mutation of the first glutamate residue is combined with replacement of another amino acid in the motif. This indicates that perturbations in EX7E are not restricted to the second glutamate residue. Moreover, Gly85 and Gly87, within a glycine-rich domain as part of a potential flexible loop, were found to be required for Alg11 function. Similarly, a conserved lysine residue, Lys319, was identified as being important for activity, which could be involved in the binding of the phosphate of the glycosyl donor.


Assuntos
Retículo Endoplasmático/metabolismo , Lipopolissacarídeos/metabolismo , Manosiltransferases/química , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Catálise , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Glicosilação , Lipopolissacarídeos/química , Manosiltransferases/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência
3.
Nat Commun ; 9(1): 886, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491436

RESUMO

Kinetochores that are not attached to microtubules prevent chromosome missegregation via the spindle assembly checkpoint. We show that they also promote their own capturing. Similar to what governs the localization of spindle assembly checkpoint proteins, the phosphorylation of Spc105 by Mps1 allows unattached kinetochores to sequester Stu1 in cooperation with Slk19. The withdrawal of Stu1, a CLASP essential for spindle integrity, from microtubules and attached kinetochores disrupts the organization of the spindle and thus allows the enhanced formation of dynamic random microtubules that span the nucleus and are ideal to capture unattached kinetochores. The enhanced formation of nuclear random microtubules does not occur if Stu1 sequestering to unattached kinetochores fails and the spindle remains uncompromised. Consequently, these cells exhibit a severely decreased capturing efficiency. After the capturing event, Stu1 is relocated to the capturing microtubule and prevents precocious microtubule depolymerization as long as kinetochores are laterally or incompletely end-on attached.


Assuntos
Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mitose , Família Multigênica , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo
4.
J Cell Biol ; 205(4): 555-71, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24862575

RESUMO

Cytoplasmic linker-associated proteins (CLASPs) are proposed to function in cell division based on their ability to bind tubulin via arrayed tumor overexpressed gene (TOG)-like (TOGL) domains. Structure predictions suggest that CLASPs have at least two TOGL domains. We show that only TOGL2 of Saccharomyces cerevisiae CLASP Stu1 binds to tubulin and is required for polymerization of spindle microtubules (MTs) in vivo. In contrast, TOGL1 recruits Stu1 to kinetochores (KTs), where it is essential for the stability and tension-dependent regulation of KT MTs. Stu1 is also recruited to spindle MTs by different mechanisms depending on the mitotic phase: in metaphase, Stu1 binds directly to the MT lattice, whereas in anaphase, it is localized indirectly to the spindle midzone. In both phases, the activity of TOGL2 is essential for interpolar MT stability, whereas TOGL1 is not involved. Thus, the two TOGL domains of yeast CLASP have different activities and execute distinct mitotic functions.


Assuntos
Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dimerização , Metáfase/fisiologia , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA