Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
PLoS Pathog ; 16(8): e1008775, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866218

RESUMO

Small RNA viruses only have a very limited coding capacity, thus most viral proteins have evolved to fulfill multiple functions. The highly conserved matrix protein 1 (M1) of influenza A viruses is a prime example for such a multifunctional protein, as it acts as a master regulator of virus replication whose different functions have to be tightly regulated. The underlying mechanisms, however, are still incompletely understood. Increasing evidence points towards an involvement of posttranslational modifications in the spatio-temporal regulation of M1 functions. Here, we analyzed the role of M1 tyrosine phosphorylation in genuine infection by using recombinant viruses expressing M1 phosphomutants. Presence of M1 Y132A led to significantly decreased viral replication compared to wildtype and M1 Y10F. Characterization of phosphorylation dynamics by mass spectrometry revealed the presence of Y132 phosphorylation in M1 incorporated into virions that is most likely mediated by membrane-associated Janus kinases late upon infection. Molecular dynamics simulations unraveled a potential phosphorylation-induced exposure of the positively charged linker domain between helices 4 and 5, supposably acting as interaction platform during viral assembly. Consistently, M1 Y132A showed a defect in lipid raft localization due to reduced interaction with viral HA protein resulting in a diminished structural stability of viral progeny and the formation of filamentous particles. Importantly, reduced M1-RNA binding affinity resulted in an inefficient viral genome incorporation and the production of non-infectious virions that interferes with virus pathogenicity in mice. This study advances our understanding of the importance of dynamic phosphorylation as a so far underestimated level of regulation of multifunctional viral proteins and emphasizes the potential feasibility of targeting posttranslational modifications of M1 as a novel antiviral intervention.


Assuntos
Vírus da Influenza A/metabolismo , Mutação de Sentido Incorreto , Proteínas da Matriz Viral/metabolismo , Células A549 , Substituição de Aminoácidos , Animais , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas da Matriz Viral/genética
2.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188731

RESUMO

Human papillomavirus 16 (HPV16), the leading cause of cervical cancer, exploits a novel endocytic pathway during host cell entry. This mechanism shares many requirements with macropinocytosis but differs in the mode of vesicle formation. Previous work indicated a role of the epidermal growth factor receptor (EGFR) in HPV16 endocytosis. However, the functional outcome of EGFR signaling and its downstream targets during HPV16 uptake are not well characterized. Here, we analyzed the functional importance of signal transduction via EGFR and its downstream effectors for endocytosis of HPV16. Our findings indicate two phases of EGFR signaling as follows: a-likely dispensable-transient activation with or shortly after cell binding and signaling required throughout the process of asynchronous internalization of HPV16. Interestingly, EGFR inhibition interfered with virus internalization and strongly reduced the number of endocytic pits, suggesting a role for EGFR signaling in the induction of HPV16 endocytosis. Moreover, we identified the Src-related kinase Abl2 as a novel regulator of virus uptake. Inhibition of Abl2 resulted in an accumulation of misshaped endocytic pits, indicating Abl2's importance for endocytic vesicle maturation. Since Abl2 rather than Src, a regulator of membrane ruffling during macropinocytosis, mediated downstream signaling of EGFR, we propose that the selective effector targeting downstream of EGFR determines whether HPV16 endocytosis or macropinocytosis is induced.IMPORTANCE Human papillomaviruses are small, nonenveloped DNA viruses that infect skin and mucosa. The so-called high-risk HPVs (e.g., HPV16, HPV18, HPV31) have transforming potential and are associated with various anogenital and oropharyngeal tumors. These viruses enter host cells by a novel endocytic pathway with unknown cellular function. To date, it is unclear how endocytic vesicle formation occurs mechanistically. Here, we addressed the role of epidermal growth factor receptor signaling, which has previously been implicated in HPV16 endocytosis and identified the kinase Abl2 as a novel regulator of virus uptake. Since other viruses, such as influenza A virus and lymphocytic choriomeningitis virus, possibly make use of related mechanisms, our findings shed light on fundamental strategies of virus entry and may in turn help to develop new host cell-targeted antiviral strategies.


Assuntos
Endocitose , Papillomavirus Humano 16/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Internalização do Vírus , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HeLa , Papillomavirus Humano 16/genética , Humanos , Camundongos , Proteínas Tirosina Quinases/genética
3.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626687

RESUMO

Merkel cell polyomavirus (MCPyV) is a small, nonenveloped tumor virus associated with an aggressive form of skin cancer, Merkel cell carcinoma (MCC). MCPyV infections are highly prevalent in the human population, with MCPyV virions being continuously shed from human skin. However, the precise host cell tropism(s) of MCPyV remains unclear: MCPyV is able to replicate within a subset of dermal fibroblasts, but MCPyV DNA has also been detected in a variety of other tissues. However, MCPyV appears different from other polyomaviruses, as it requires sulfated polysaccharides, such as heparan sulfates and/or chondroitin sulfates, for initial attachment. Like other polyomaviruses, MCPyV engages sialic acid as a (co)receptor. To explore the infectious entry process of MCPyV, we analyzed the cell biological determinants of MCPyV entry into A549 cells, a highly transducible lung carcinoma cell line, in comparison to well-studied simian virus 40 and a number of other viruses. Our results indicate that MCPyV enters cells via caveolar/lipid raft-mediated endocytosis but not macropinocytosis, clathrin-mediated endocytosis, or glycosphingolipid-enriched carriers. The viruses were internalized in small endocytic pits that led the virus to endosomes and from there to the endoplasmic reticulum (ER). Similar to other polyomaviruses, trafficking required microtubular transport, acidification of endosomes, and a functional redox environment. To our surprise, the virus was found to acquire a membrane envelope within endosomes, a phenomenon not reported for other viruses. Only minor amounts of viruses reached the ER, while the majority was retained in endosomal compartments, suggesting that endosome-to-ER trafficking is a bottleneck during infectious entry.IMPORTANCE MCPyV is the first polyomavirus directly implicated in the development of an aggressive human cancer, Merkel cell carcinoma (MCC). Although MCPyV is constantly shed from healthy skin, the MCC incidence increases among aging and immunocompromised individuals. To date, the events connecting initial MCPyV infection and subsequent transformation still remain elusive. MCPyV differs from other known polyomaviruses concerning its cell tropism, entry receptor requirements, and infection kinetics. In this study, we examined the cellular requirements for endocytic entry as well as the subcellular localization of incoming virus particles. A thorough understanding of the determinants of the infectious entry pathway and the specific biological niche will benefit prevention of virus-derived cancers such as MCC.


Assuntos
Poliomavírus das Células de Merkel/patogenicidade , Infecções por Polyomavirus/virologia , Células A549 , Antígenos Virais de Tumores/metabolismo , Carcinoma de Célula de Merkel/virologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Fibroblastos/virologia , Células HEK293 , Células HeLa , Heparitina Sulfato/metabolismo , Humanos , Poliomavírus das Células de Merkel/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Pele/virologia , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/virologia , Tropismo Viral/fisiologia
4.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29593032

RESUMO

Human papillomavirus 16 (HPV16) is the leading cause of cervical cancer. For initial infection, HPV16 utilizes a novel endocytic pathway for host cell entry. Unique among viruses, uptake occurs asynchronously over a protracted period of time, with half-times between 9 and 12 h. To trigger endocytic uptake, the virus particles need to undergo a series of structural modifications after initial binding to heparan sulfate proteoglycans (HSPGs). These changes involve proteolytic cleavage of the major capsid protein L1 by kallikrein-8 (KLK8), exposure of the N terminus of the minor capsid protein L2 by cyclophilins, and cleavage of this N terminus by furin. Overall, the structural changes are thought to facilitate the engagement of an elusive secondary receptor for internalization. Here, we addressed whether structural changes are the rate-limiting steps during infectious internalization of HPV16 by using structurally primed HPV16 particles. Our findings indicate that the structural modifications mediated by cyclophilins and furin, which lead to exposure and cleavage, respectively, of the L2 N terminus contribute to the slow and asynchronous internalization kinetics, whereas conformational changes elicited by HSPG binding and KLK8 cleavage did not. However, these structural modifications accounted for only 30 to 50% of the delay in internalization. Therefore, we propose that limited internalization receptor availability for engagement of HPV16 causes slow and asynchronous internalization in addition to rate-limiting structural changes in the viral capsid.IMPORTANCE HPVs are the main cause of anogenital cancers. Their unique biology is linked to the differentiation program of skin or mucosa. Here, we analyzed another unique aspect of HPV infections using the prototype HPV16. After initial cell binding, HPVs display an unusually protracted residence time on the plasma membrane prior to asynchronous uptake. As viruses typically do not expose themselves to host immune sensing, we analyzed the underlying reasons for this unusual behavior. This study provides evidence that both extracellular structural modifications and possibly a limited availability of the internalization receptor contribute to the slow internalization process of the virus. These findings indicate that perhaps a unique niche for initial infection that could allow for rapid infection exists. In addition, our results may help to develop novel, preventive antiviral measures.


Assuntos
Capsídeo/química , Proteoglicanas de Heparan Sulfato/metabolismo , Papillomavirus Humano 16/fisiologia , Endocitose , Células HeLa , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/metabolismo , Humanos , Calicreínas/metabolismo , Conformação Proteica , Internalização do Vírus
5.
PLoS Pathog ; 13(5): e1006308, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28464022

RESUMO

Incoming papillomaviruses (PVs) depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR) of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE) within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE) or L2(IVAL286AAAA) were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with mitotic chromosomes is conserved among the alpha, beta, gamma, and iota genera of Papillomaviridae. However, different binding patterns point to a certain variance amongst the different genera. Overall, our data suggest a common strategy among various PVs, in which a central region of L2 mediates tethering of vDNA to mitotic chromosomes during cell division thereby coordinating membrane translocation and delivery to daughter nuclei.


Assuntos
Proteínas do Capsídeo/metabolismo , Genoma Viral/genética , Papillomavirus Humano 16/genética , Mitose , Proteínas Oncogênicas Virais/metabolismo , Transporte Biológico , Proteínas do Capsídeo/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Cromatina/genética , Cromossomos/genética , DNA Viral/genética , DNA Viral/metabolismo , Genes Reporter , Papillomavirus Humano 16/fisiologia , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Mutação , Proteínas Oncogênicas Virais/genética , Vírion
6.
PLoS Pathog ; 13(2): e1006159, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28158302

RESUMO

Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors, we provide new insights into the pathogenesis of EHEC O157 infections. Our data have implications for considering O157 OMVs as vaccine candidates.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Infecções por Escherichia coli/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Fatores de Virulência/metabolismo , Virulência/fisiologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Escherichia coli O157 , Humanos , Immunoblotting , Microscopia Eletrônica de Transmissão , Transporte Proteico/fisiologia , Vesículas Transportadoras/fisiologia
7.
Cell Microbiol ; 20(11): e12945, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30137651

RESUMO

The delivery of effector proteins into infected eukaryotic cells represents a key virulence feature of many microbial pathogens in order to derail essential cellular processes and effectively counter the host defence system. Although bacterial effectors are truly numerous and exhibit a wide range of biochemical activities, commonalities in terms of protein structure and function shared by many bacterial pathogens exist. Recent progress has shed light on a species-spanning family of bacterial effectors containing an LPX repeat motif as a subtype of the leucine-rich repeat superfamily, partially combined with a novel E3 ubiquitin ligase domain. This review highlights the immunomodulatory effects of LPX effector proteins, with particular emphasis on the exploitation of the host ubiquitin system.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Motivos de Aminoácidos , Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Salmonella/patogenicidade , Shigella/patogenicidade , Ubiquitina/metabolismo
8.
Cell Mol Life Sci ; 75(12): 2273-2289, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29285573

RESUMO

Effector proteins are key virulence factors of pathogenic bacteria that target and subvert the functions of essential host defense mechanisms. Typically, these proteins are delivered into infected host cells via the type III secretion system (T3SS). Recently, however, several effector proteins have been found to enter host cells in a T3SS-independent manner thereby widening the potential range of these virulence factors. Prototypes of such bacteria-derived cell-penetrating effectors (CPEs) are the Yersinia enterocolitica-derived YopM as well as the Salmonella typhimurium effector SspH1. Here, we investigated specifically the group of bacterial LPX effector proteins comprising the Shigella IpaH proteins, which constitute a subtype of the leucine-rich repeat protein family and share significant homologies in sequence and structure. With particular emphasis on the Shigella-effector IpaH9.8, uptake into eukaryotic cell lines was shown. Recombinant IpaH9.8 (rIpaH9.8) is internalized via endocytic mechanisms and follows the endo-lysosomal pathway before escaping into the cytosol. The N-terminal alpha-helical domain of IpaH9.8 was identified as the protein transduction domain required for its CPE ability as well as for being able to deliver other proteinaceous cargo. rIpaH9.8 is functional as an ubiquitin E3 ligase and targets NEMO for poly-ubiquitination upon cell penetration. Strikingly, we could also detect other recombinant LPX effector proteins from Shigella and Salmonella intracellularly when applied to eukaryotic cells. In this study, we provide further evidence for the general concept of T3SS-independent translocation by identifying novel cell-penetrating features of these LPX effectors revealing an abundant species-spanning family of CPE.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência Conservada/genética , Família Multigênica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Fatores de Virulência/química , Animais , Proteínas de Bactérias/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Domínios e Motivos de Interação entre Proteínas/genética , Células RAW 264.7 , Especificidade da Espécie , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Yersinia enterocolitica/química , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
9.
Int J Med Microbiol ; 308(7): 872-881, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29936031

RESUMO

Microbial pathogens have developed intriguing molecular strategies to modulate and/or control host cell functions to ensure their own survival and replication. During this molecular interplay between microbes and their respective hosts especially secreted virulence factors play a major role. These factors not only include a plethora of cytotoxins but also sophisticated effector proteins targeting intracellular decision points leading to inhibition of defense responses - and/or even to cell death. To be effective, most of these secreted factors have to get across the cytoplasmic membrane and reach their targets in the cytoplasm. Apparently, pathogens use multiple mechanisms to deliver virulence factors to their cytoplasmic destination. Here, we exemplarily discuss the recently emerging scenario of parallel strategies for the intracellular deployment of toxins and effector proteins of Gram-negative pathogens with a special focus on pathogenic Escherichia coli. These pathogens employ various nanomachines such as the type III secretion system (T3SS), cell-penetrating effector proteins (CPE), and the wrapping of virulence factors in outer membrane vesicles (OMV) for protection and parallel delivery. As intracellular delivery remains a major problem in drug development, potential therapeutic applications based on these bacterial strategies will be briefly discussed.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/transmissão , Interações Hospedeiro-Patógeno/fisiologia , Sistemas de Secreção Tipo III/fisiologia , Sistemas de Secreção Tipo IV/fisiologia , Sistemas de Secreção Tipo VI/fisiologia , Infecções por Escherichia coli/microbiologia , Humanos , Transporte Proteico/fisiologia , Fatores de Virulência/metabolismo
10.
Int J Med Microbiol ; 308(8): 1027-1035, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30268774

RESUMO

The Gram-positive anaerobic bacterium Cutibacterium acnes is a commensal of the human skin, but also an opportunistic pathogen that contributes to the pathophysiology of the skin disease acne vulgaris. Moreover, C. acnes, in addition to other skin-colonizing bacteria such as S. epidermidis and S. aureus, is an emerging pathogen of implant-associated infections. Notably, C. acnes isolates exhibit marked heterogeneity and can be divided into at least 6 phylotypes by multilocus sequence typing. It is becoming increasingly evident that biofilm formation is a relevant factor for C. acnes virulence, but information on biofilm formation by diverse C. acnes isolates is limited. In this study we performed a first comparative analysis of 58 diverse skin- or implant-isolates covering all six C. acnes phylotypes to investigate biofilm formation dynamics, biofilm morphology and attachment properties to abiotic surfaces. The results presented herein suggest that biofilm formation correlates with the phylotype, rather than the anatomical isolation site. IA1 isolates, particularly SLST sub-types A1 and A2, showed highest biofilm amounts in the microtiter plate assays, followed by isolates of the IC, IA2 and II phylotypes. Microscopic evaluation revealed well-structured three-dimensional biofilms and relatively high adhesive properties to abiotic surfaces for phylotypes IA1, IA2 and IC. Representatives of phylotype III formed biofilms with comparable biomass, but with less defined structures, whereas IB as well as II isolates showed the least complex three-dimensional morphology. Proteinase K- and DNase I-treatment reduced attachment rates of all phylotypes, therefore, indicating that extracellular DNA and proteins are critical for adhesion to abiotic surfaces. Moreover, proteins seem to be pivotal structural biofilm components as mature biofilms of all phylotypes were proteinase K-sensitive, whereas the sensitivity to DNase I-treatment varied depending on the phylotype.


Assuntos
Acne Vulgar/microbiologia , Biofilmes/crescimento & desenvolvimento , Infecções por Bactérias Gram-Positivas/microbiologia , Propionibacteriaceae/crescimento & desenvolvimento , Pele/microbiologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Desoxirribonuclease I/farmacologia , Endopeptidase K/farmacologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Fluorescência , Compostos Orgânicos/farmacologia , Propionibacteriaceae/efeitos dos fármacos , Propionibacteriaceae/isolamento & purificação
11.
Int J Med Microbiol ; 308(3): 387-404, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29550166

RESUMO

Enteropathogenic Escherichia coli (EPEC) subvert host cell signaling pathways by injecting effector proteins via a Type 3 Secretion System (T3SS). The T3SS-dependent EspB protein is a multi-functional effector protein, which contributes to adherence and translocator pore formation and after injection exhibits several intracellular activities. In addition, EspB is also secreted into the environment. Effects of secreted EspB have not been reported thus far. As a surrogate for secreted EspB we employed recombinant EspB (rEspB) derived from the prototype EPEC strain E2348/69 and investigated the interactions of the purified protein with different human epithelial and immune cells including monocytic THP-1 cells, macrophages, dendritic cells, U-937, epithelial T84, Caco-2, and HeLa cells. To assess whether these proteins might exert a cytotoxic effect we monitored the release of lactate dehydrogenase (LDH) as well as propidium iodide (PI) uptake. For comparison, we also investigated several homologs of EspB such as IpaD of Shigella, and SipC, SipD, SseB, and SseD of Salmonella as purified recombinant proteins. Interestingly, cytotoxicity was only observed in THP-1 cells and macrophages, whereas epithelial cells remained unaffected. Cell fractionation and immune fluorescence experiments showed that rEspB enters cells autonomously, which suggests that EspB might qualify as a novel cell-penetrating effector protein (CPE). Using specific organelle tracers and inhibitors of signaling pathways we found that rEspB destroys the mitochondrial membrane potential - an indication of programmed cell death induction in THP-1 cells. Here we show that EspB not only constitutes an essential part of the T3SS-nanomachine and contributes to the arsenal of injected effector proteins but, furthermore, that secreted (recombinant) EspB autonomously enters host cells and selectively induces cell death in immune cells.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Morte Celular/genética , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Monócitos/patologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Células CACO-2 , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Células HeLa , Humanos , L-Lactato Desidrogenase/análise , Monócitos/microbiologia , Propídio/metabolismo , Transporte Proteico , Salmonella/genética , Células THP-1
12.
Artigo em Inglês | MEDLINE | ID: mdl-28096156

RESUMO

Commonly used antimicrobials show poor cellular uptake and often have limited access to intracellular targets, resulting in low antimicrobial activity against intracellular pathogens. An efficient delivery system to transport these drugs to the intracellular site of action is needed. Cell-penetrating peptides (CPPs) mediate the internalization of biologically active molecules into the cytoplasm. Here, we characterized two CPPs, α1H and α2H, derived from the Yersinia enterocolitica YopM effector protein. These CPPs, as well as Tat (trans-activator of transcription) from HIV-1, were used to deliver the antibiotic gentamicin to target intracellular bacteria. The YopM-derived CPPs penetrated different endothelial and epithelial cells to the same extent as Tat. CPPs were covalently conjugated to gentamicin, and CPP-gentamicin conjugates were used to target infected cells to kill multiple intracellular Gram-negative pathogenic bacteria, including Escherichia coli K1, Salmonella enterica serovar Typhimurium, and Shigella flexneri Taken together, CPPs show great potential as delivery vehicles for antimicrobial agents and may contribute to the generation of new therapeutic tools to treat infectious diseases caused by intracellular pathogens.


Assuntos
Peptídeos Penetradores de Células/química , Gentamicinas/química , Gentamicinas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Escherichia coli/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Shigella flexneri/efeitos dos fármacos
13.
J Biol Chem ; 290(41): 24835-43, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26324705

RESUMO

Pertussis toxin (PTx), an AB5 toxin and major virulence factor of the whooping cough-causing pathogen Bordetella pertussis, has been shown to affect the blood-brain barrier. Dysfunction of the blood-brain barrier may facilitate penetration of bacterial pathogens into the brain, such as Escherichia coli K1 (RS218). In this study, we investigated the influence of PTx on blood-brain barrier permissiveness to E. coli infection using human brain-derived endothelial HBMEC and TY10 cells as in vitro models. Our results indicate that PTx acts at several key points of host cell intracellular signaling pathways, which are also affected by E. coli K1 RS218 infection. Application of PTx increased the expression of the pathogen binding receptor gp96. Further, we found an activation of STAT3 and of the small GTPase Rac1, which have been described as being essential for bacterial invasion involving host cell actin cytoskeleton rearrangements at the bacterial entry site. In addition, we showed that PTx induces a remarkable relocation of VE-cadherin and ß-catenin from intercellular junctions. The observed changes in host cell signaling molecules were accompanied by differences in intracellular calcium levels, which might act as a second messenger system for PTx. In summary, PTx not only facilitates invasion of E. coli K1 RS218 by activating essential signaling cascades; it also affects intercellular barriers to increase paracellular translocation.


Assuntos
Translocação Bacteriana/efeitos dos fármacos , Encéfalo/citologia , Células Endoteliais/citologia , Escherichia coli/fisiologia , Microvasos/citologia , Toxina Pertussis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antígenos CD/metabolismo , Caderinas/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Escherichia coli/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para Cima/efeitos dos fármacos , beta Catenina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Infect Immun ; 84(9): 2482-92, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27297392

RESUMO

Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side.


Assuntos
Quimiocina CXCL1/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli/metabolismo , Interleucina-8/metabolismo , MicroRNAs/metabolismo , Probióticos/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelina/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Monócitos/microbiologia , NF-kappa B/metabolismo
15.
PLoS Pathog ; 9(12): e1003797, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348251

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) strains cause diarrhea and hemolytic uremic syndrome resulting from toxin-mediated microvascular endothelial injury. EHEC hemolysin (EHEC-Hly), a member of the RTX (repeats-in-toxin) family, is an EHEC virulence factor of increasingly recognized importance. The toxin exists as free EHEC-Hly and as EHEC-Hly associated with outer membrane vesicles (OMVs) released by EHEC during growth. Whereas the free toxin is lytic towards human endothelium, the biological effects of the OMV-associated EHEC-Hly on microvascular endothelial and intestinal epithelial cells, which are the major targets during EHEC infection, are unknown. Using microscopic, biochemical, flow cytometry and functional analyses of human brain microvascular endothelial cells (HBMEC) and Caco-2 cells we demonstrate that OMV-associated EHEC-Hly does not lyse the target cells but triggers their apoptosis. The OMV-associated toxin is internalized by HBMEC and Caco-2 cells via dynamin-dependent endocytosis of OMVs and trafficked with OMVs into endo-lysosomal compartments. Upon endosome acidification and subsequent pH drop, EHEC-Hly is separated from OMVs, escapes from the lysosomes, most probably via its pore-forming activity, and targets mitochondria. This results in decrease of the mitochondrial transmembrane potential and translocation of cytochrome c to the cytosol, indicating EHEC-Hly-mediated permeabilization of the mitochondrial membranes. Subsequent activation of caspase-9 and caspase-3 leads to apoptotic cell death as evidenced by DNA fragmentation and chromatin condensation in the intoxicated cells. The ability of OMV-associated EHEC-Hly to trigger the mitochondrial apoptotic pathway in human microvascular endothelial and intestinal epithelial cells indicates a novel mechanism of EHEC-Hly involvement in the pathogenesis of EHEC diseases. The OMV-mediated intracellular delivery represents a newly recognized mechanism for a bacterial toxin to enter host cells in order to target mitochondria.


Assuntos
Células Endoteliais/microbiologia , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas Hemolisinas/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Mitocôndrias/microbiologia , Vesículas Secretórias/metabolismo , Fatores de Virulência/metabolismo , Apoptose/efeitos dos fármacos , Células CACO-2 , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/ultraestrutura , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Síndrome Hemolítico-Urêmica/genética , Síndrome Hemolítico-Urêmica/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Dados de Sequência Molecular , Fatores de Virulência/genética , Fatores de Virulência/farmacologia
16.
Int J Med Microbiol ; 305(3): 424-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25865799

RESUMO

Yersinia outer protein M (YopM) belongs to the group of Yop effector proteins, which are highly conserved among pathogenic Yersinia species. During infection, the effectors are delivered into the host cell cytoplasm via the type 3 secretion system to subvert the host immune response and support the survival of Yersinia. In contrast to the other Yop effectors, YopM does not possess a known enzymatic activity and its molecular mechanism(s) of action remain(s) poorly understood. However, YopM was shown to promote colonization and dissemination of Yersinia, thus being crucial for the pathogen's virulence in vivo. Moreover, YopM interacts with several host cell proteins and might utilize them to execute its anti-inflammatory activities. The results obtained so far indicate that YopM is a multifunctional protein that counteracts the host immune defense by multiple activities, which are at least partially independent of each other. Finally, its functions seem to be also influenced by differences between the specific YopM isoforms expressed by Yersinia subspecies. In this review, we focus on the global as well as more specific contribution of YopM to virulence of Yersinia during infection and point out the various extra- and intracellular molecular functions of YopM. In addition, the novel cell-penetrating ability of recombinant YopM and its potential applications as a self-delivering immunomodulatory therapeutic will be discussed.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Evasão da Resposta Imune , Fatores de Virulência/metabolismo , Yersiniose/microbiologia , Yersiniose/patologia , Yersinia/fisiologia , Humanos , Tolerância Imunológica , Yersiniose/imunologia
17.
J Clin Microbiol ; 52(2): 407-18, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478469

RESUMO

Uropathogenic Escherichia coli (UPEC) is the most common cause of community- and hospital-acquired urinary tract infections (UTIs). Isolates from uncomplicated community-acquired UTIs express a variety of virulence traits that promote the efficient colonization of the urinary tract. In contrast, nosocomial UTIs can be caused by E. coli strains that differ in their virulence traits from the community-acquired UTI isolates. UPEC virulence markers are used to distinguish these facultative extraintestinal pathogens, which belong to the intestinal flora of many healthy individuals, from intestinal pathogenic E. coli (IPEC). IPEC is a diarrheagenic pathogen with a characteristic virulence gene set that is absent in UPEC. Here, we characterized 265 isolates from patients with UTIs during inpatient or outpatient treatment at a hospital regarding their phylogenies and IPEC or UPEC virulence traits. Interestingly, 28 of these isolates (10.6%) carried typical IPEC virulence genes that are characteristic of enteroaggregative E. coli (EAEC), Shiga toxin-producing E. coli (STEC), and atypical enteropathogenic E. coli (aEPEC), although IPEC is not considered a uropathogen. Twenty-three isolates harbored the astA gene coding for the EAEC heat-stable enterotoxin 1 (EAST1), and most of them carried virulence genes that are characteristic of UPEC and/or EAEC. Our results indicate that UPEC isolates from hospital patients differ from archetypal community-acquired isolates from uncomplicated UTIs by their spectrum of virulence traits. They represent a diverse group, including EAEC, as well as other IPEC pathotypes, which in addition contain typical UPEC virulence genes. The combination of typical extraintestinal pathogenic E. coli (ExPEC) and IPEC virulence determinants in some isolates demonstrates the marked genome plasticity of E. coli and calls for a reevaluation of the strict pathotype classification of EAEC.


Assuntos
Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Variação Genética , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética , Fatores de Virulência/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/isolamento & purificação , Proteínas de Escherichia coli/genética , Feminino , Genótipo , Hospitais , Humanos , Lactente , Pacientes Internados , Masculino , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/isolamento & purificação , Adulto Jovem
18.
Int J Med Microbiol ; 304(3-4): 444-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24636859

RESUMO

The Yersinia outer protein M (YopM) is a type 3 secretion system (T3SS)-dependent effector protein of Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis. Although YopM is indispensable for full virulence, its molecular functions still remain largely elusive. Recently, we could identify the recombinant YopM (rYopM) protein derived from the Y. enterocolitica strain 8081 (JB580) as a cell-penetrating protein, which down-regulates the expression of various pro-inflammatory cytokines including TNFα. In this study, we have generated rabbit monoclonal anti-YopM antibodies (RabMabs). RabMabs were characterized by SDS-PAGE and Western blotting using various truncated versions of rYopM to identify epitope-containing domains. RabMabs recognizing either the N- or C-terminus of YopM were characterized further and validated using a collection of 61 pathogenic and non-pathogenic Yersinia strains as well as exemplary strains of major intestinal bacterial pathogens such as Salmonella enterica ssp. enterica, Shigella flexneri and intestinal pathogenic Escherichia coli. RabMab 41.3 directed at the N-terminus of YopM of Y. enterocolitica strain 8081 recognized all YopM-expressing pathogenic Yersinia strains analyzed in this study but failed to recognize non-pathogenic isolates. Thus, RabMab 41.3 might be applicable for the detection of pathogenic Yersinia strains.


Assuntos
Anticorpos Monoclonais , Proteínas da Membrana Bacteriana Externa/imunologia , Yersinia enterocolitica/isolamento & purificação , Yersinia pestis/isolamento & purificação , Yersinia pseudotuberculosis/isolamento & purificação , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Feminino , Coelhos , Sensibilidade e Especificidade , Yersinia enterocolitica/imunologia , Yersinia pestis/imunologia , Yersinia pseudotuberculosis/imunologia
19.
J Lipid Res ; 54(3): 692-710, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23248329

RESUMO

Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.


Assuntos
Glicoesfingolipídeos/metabolismo , Linfócitos/metabolismo , Microdomínios da Membrana/metabolismo , Células Mieloides/metabolismo , Toxina Shiga/metabolismo , Western Blotting , Linhagem Celular , Proliferação de Células , Eletroforese em Gel de Poliacrilamida , Galactosiltransferases/metabolismo , Globosídeos/metabolismo , Células HL-60 , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Triexosilceramidas/metabolismo
20.
Glycobiology ; 22(6): 849-62, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22279060

RESUMO

Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) represents the major virulence factor responsible for the pig edema disease which is characterized by hemorrhagic lesions, neurological disorders and often fatal outcomes. Stx2e-producing strains from the intestine of slaughtered pigs (n = 3), feces of piglets with postweaning diarrhea or edema disease (n = 12) and feces of humans with asymptomatic infections or mild diarrhea (n = 13) were comparatively analyzed for the binding specificities of Stx2e to glycosphingolipids (GSLs) of the globo-series. Besides equivalent binding towards globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), we could demonstrate specific interaction of Stx2e preparations from human and porcine STEC isolates with Forssman GSL. Notably, Forssman GSL was recognized neither by structurally closely related Stx2 nor by Stx1 derived from human STEC isolates conferring Stx2e a unique recognition feature. Noteworthy, 7 (54%) of the 13 human and 8 (53%) of the 15 pig Stx2e samples exhibited cytotoxic action towards human brain microvascular endothelial cells. Our findings provide a basis for further exploring the functional role of the promiscuous receptor repertoire of Stx2e and the exact nature of the mechanisms that underlie different pathological outcomes of Stx2e-producing STEC in humans and pigs.


Assuntos
Globosídeos/química , Toxina Shiga II/química , Animais , Células Endoteliais/efeitos dos fármacos , Fezes , Humanos , Microvasos/citologia , Toxina Shiga II/isolamento & purificação , Toxina Shiga II/farmacologia , Relação Estrutura-Atividade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA