Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967956

RESUMO

Wild aquatic birds maintain a large, genetically diverse pool of influenza A viruses (IAVs), which can be transmitted to lower mammals and, ultimately, humans. Through phenotypic analyses of viral replication efficiency, only a small set of avian IAVs were found to replicate well in epithelial cells of the swine upper respiratory tract, and these viruses were shown to infect and cause virus shedding in pigs. Such a phenotypic trait of the viral replication efficiency appears to emerge randomly and is distributed among IAVs across multiple avian species and geographic and temporal orders. It is not determined by receptor binding preference but is determined by other markers across genomic segments, such as those in the ribonucleoprotein complex. This study demonstrates that phenotypic variants of viral replication efficiency exist among avian IAVs but that only a few of these may result in viral shedding in pigs upon infection, providing opportunities for these viruses to become adapted to pigs, thus posing a higher potential risk for creating novel variants or detrimental reassortants within pig populations.IMPORTANCE Swine serve as a mixing vessel for generating pandemic strains of human influenza virus. All hemagglutinin subtypes of IAVs can infect swine; however, only sporadic cases of infection with avian IAVs are reported in domestic swine. The molecular mechanisms affecting the ability of avian IAVs to infect swine are still not fully understood. From the findings of phenotypic analyses, this study suggests that the tissue tropisms (i.e., in swine upper respiratory tracts) of avian IAVs affect their spillovers from wild birds to pigs. It was found that this phenotype is determined not by receptor binding preference but is determined by other markers across genomic segments, such as those in the ribonucleoprotein complex. In addition, our results show that such a phenotypic trait was sporadically and randomly distributed among IAVs across multiple avian species and geographic and temporal orders. This study suggests an efficient way for assessment of the risk posed by avian IAVs, such as in evaluating their potentials to be transmitted from birds to pigs.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Vírus da Influenza A/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Tropismo , Animais , Linhagem Celular , Células Epiteliais/virologia , Células HEK293 , Hemaglutininas , Humanos , Vírus da Influenza A/crescimento & desenvolvimento , Pandemias , Filogenia , Sistema Respiratório/virologia , Suínos , Replicação Viral , Eliminação de Partículas Virais
2.
PLoS Pathog ; 14(12): e1007417, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30507946

RESUMO

Genetic reassortment between influenza A viruses (IAVs) facilitate emergence of pandemic strains, and swine are proposed as a "mixing vessel" for generating reassortants of avian and mammalian IAVs that could be of risk to mammals, including humans. However, how a transmissible reassortant emerges in swine are not well understood. Genomic analyses of 571 isolates recovered from nasal wash samples and respiratory tract tissues of a group of co-housed pigs (influenza-seronegative, avian H1N1 IAV-infected, and swine H3N2 IAV-infected pigs) identified 30 distinct genotypes of reassortants. Viruses recovered from lower respiratory tract tissues had the largest genomic diversity, and those recovered from turbinates and nasal wash fluids had the least. Reassortants from lower respiratory tracts had the largest variations in growth kinetics in respiratory tract epithelial cells, and the cold temperature in swine nasal cells seemed to select the type of reassortant viruses shed by the pigs. One reassortant in nasal wash samples was consistently identified in upper, middle, and lower respiratory tract tissues, and it was confirmed to be transmitted efficiently between pigs. Study findings suggest that, during mixed infections of avian and swine IAVs, genetic reassortments are likely to occur in the lower respiratory track, and tissue tropism is an important factor selecting for a transmissible reassortant.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae , Recombinação Genética/genética , Tropismo Viral , Animais , Coinfecção , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/patogenicidade , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Infecções Respiratórias/virologia , Suínos
3.
Mol Ecol ; 29(6): 1103-1119, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080922

RESUMO

Invasive alien species are a significant threat to both economic and ecological systems. Identifying the processes that give rise to invasive populations is essential for implementing effective control strategies. We conducted an ancestry analysis of invasive feral swine (Sus scrofa, Linnaeus, 1758), a highly destructive ungulate that is widely distributed throughout the contiguous United States, to describe introduction pathways, sources of newly emergent populations and processes contributing to an ongoing invasion. Comparisons of high-density single nucleotide polymorphism genotypes for 6,566 invasive feral swine to a comprehensive reference set of S. scrofa revealed that the vast majority of feral swine were of mixed ancestry, with dominant genetic associations to Western heritage breeds of domestic pig and European populations of wild boar. Further, the rapid expansion of invasive feral swine over the past 30 years was attributable to secondary introductions from established populations of admixed ancestry as opposed to direct introductions of domestic breeds or wild boar. Spatially widespread genetic associations of invasive feral swine to European wild boar deviated strongly from historical S. scrofa introduction pressure, which was largely restricted to domestic pigs with infrequent, localized wild boar releases. The deviation between historical introduction pressure and contemporary genetic ancestry suggests wild boar-hybridization may contribute to differential fitness in the environment and heightened invasive potential for individuals of admixed domestic pig-wild boar ancestry.


Assuntos
Animais Selvagens/genética , Hibridização Genética , Sus scrofa/genética , Animais , Genética Populacional , Genótipo , Espécies Introduzidas , Polimorfismo de Nucleotídeo Único , Estados Unidos
4.
Appl Environ Microbiol ; 83(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733290

RESUMO

Influenza A viruses (IAVs) in swine can cause sporadic infections and pandemic outbreaks among humans, but how avian IAV emerges in swine is still unclear. Unlike domestic swine, feral swine are free ranging and have many opportunities for IAV exposure through contacts with various habitats and animals, including migratory waterfowl, a natural reservoir for IAVs. During the period from 2010 to 2013, 8,239 serum samples were collected from feral swine across 35 U.S. states and tested against 45 contemporary antigenic variants of avian, swine, and human IAVs; of these, 406 (4.9%) samples were IAV antibody positive. Among 294 serum samples selected for antigenic characterization, 271 cross-reacted with ≥1 tested virus, whereas the other 23 did not cross-react with any tested virus. Of the 271 IAV-positive samples, 236 cross-reacted with swine IAVs, 1 with avian IAVs, and 16 with avian and swine IAVs, indicating that feral swine had been exposed to both swine and avian IAVs but predominantly to swine IAVs. Our findings suggest that feral swine could potentially be infected with both avian and swine IAVs, generating novel IAVs by hosting and reassorting IAVs from wild birds and domestic swine and facilitating adaptation of avian IAVs to other hosts, including humans, before their spillover. Continued surveillance to monitor the distribution and antigenic diversities of IAVs in feral swine is necessary to increase our understanding of the natural history of IAVs.IMPORTANCE There are more than 5 million feral swine distributed across at least 35 states in the United States. In contrast to domestic swine, feral swine are free ranging and have unique opportunities for contact with wildlife, livestock, and their habitats. Our serological results indicate that feral swine in the United States have been exposed to influenza A viruses (IAVs) consistent with those found in both domestic swine and wild birds, with the predominant infections consisting of swine-adapted IAVs. Our findings suggest that feral swine have been infected with IAVs at low levels and could serve as hosts for the generation of novel IAVs at the interface of feral swine, wild birds, domestic swine, and humans.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Animais , Animais Domésticos/virologia , Aves , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Filogenia , Suínos , Estados Unidos
5.
J Gen Virol ; 96(9): 2569-2578, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26297148

RESUMO

Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic 'mixing vessels' for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations.


Assuntos
Animais Selvagens/virologia , Anticorpos Antivirais/sangue , Vírus da Influenza A Subtipo H3N2/fisiologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Eliminação de Partículas Virais , Animais , Animais Selvagens/sangue , Animais Selvagens/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/diagnóstico , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/sangue , Doenças dos Suínos/diagnóstico
6.
Emerg Infect Dis ; 20(5): 843-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24751326

RESUMO

To determine whether, and to what extent, influenza A subtype H3 viruses were present in feral swine in the United States, we conducted serologic and virologic surveillance during October 2011-September 2012. These animals were periodically exposed to and infected with A(H3N2) viruses, suggesting they may threaten human and animal health.


Assuntos
Vírus da Influenza A/classificação , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/epidemiologia , Animais , Feminino , Geografia , História do Século XXI , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/epidemiologia , Influenza Humana/virologia , Masculino , Vigilância em Saúde Pública , Sorotipagem , Suínos , Doenças dos Suínos/história , Doenças dos Suínos/virologia , Estados Unidos/epidemiologia
7.
Vector Borne Zoonotic Dis ; 21(9): 667-674, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34191632

RESUMO

Plague is caused by a bacterial pathogen (Yersinia pestis) that can infect a wide range of mammal species, but its presence in wildlife is often underappreciated. Using a large-scale data set (n = 44,857) that details the extent of Y. pestis exposure in wildlife, we document exposure in 18 wildlife species, including coyotes (Canis latrans), bobcats (Lynx rufus), and black bears (Ursus americanus). Evidence of plague activity is widespread, with seropositive animals detected in every western state in the contiguous United States. Pathogen monitoring systems in wildlife that are both large scale and long-term are rare, yet they open the door for analyses on potential shifts in distribution that have occurred over time because of climate or land use changes. The data generated by these long-term monitoring programs, combined with recent advances in our understanding of pathogen ecology, offer a clearer picture of zoonotic pathogens and the risks they pose.


Assuntos
Coiotes , Peste , Yersinia pestis , Animais , Animais Selvagens , Peste/epidemiologia , Peste/veterinária , Estados Unidos/epidemiologia
8.
G3 (Bethesda) ; 11(11)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34849792

RESUMO

Bacteriophages infecting pathogenic hosts play an important role in medical research, not only as potential treatments for antibiotic-resistant infections but also offering novel insights into pathogen genetics and evolution. A prominent example is cluster K mycobacteriophages infecting Mycobacterium tuberculosis, a causative agent of tuberculosis in humans. However, as handling M. tuberculosis as well as other pathogens in a laboratory remains challenging, alternative nonpathogenic relatives, such as Mycobacterium smegmatis, are frequently used as surrogates to discover therapeutically relevant bacteriophages in a safer environment. Consequently, the individual host ranges of the majority of cluster K mycobacteriophages identified to date remain poorly understood. Here, we characterized the complete genome of Stinson, a temperate subcluster K1 mycobacteriophage with a siphoviral morphology. A series of comparative genomic analyses revealed strong similarities with other cluster K mycobacteriophages, including the conservation of an immunity repressor gene and a toxin/antitoxin gene pair. Patterns of codon usage bias across the cluster offered important insights into putative host ranges in nature, highlighting that although all cluster K mycobacteriophages are able to infect M. tuberculosis, they are less likely to have shared an evolutionary infection history with Mycobacterium leprae (underlying leprosy) compared to the rest of the genus' host species. Moreover, subcluster K1 mycobacteriophages are able to integrate into the genomes of Mycobacterium abscessus and Mycobacterium marinum-two bacteria causing pulmonary and cutaneous infections which are often difficult to treat due to their drug resistance.


Assuntos
Micobacteriófagos , Uso do Códon , Genoma Viral , Humanos , Micobacteriófagos/genética , Mycobacterium smegmatis/genética , Filogenia
9.
Heliyon ; 4(9): e00754, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30211329

RESUMO

Distribution of oral rabies vaccine baits has been used as a strategy for managing rabies in the United States since the 1990s. Since that time, efforts have been made to improve baiting strategies with a focus on bait density to maximize both efficiency and cost effectiveness. An optimal rabies management strategy includes a vaccine bait preferred by the target species that is distributed at the minimal density needed to achieve population immunity to prevent rabies spread. The purpose of our pilot study was to examine the effect of 75, 150, and 300 baits/km2 vaccine bait densities on rabies virus neutralizing antibody (RVNA) seroprevalence in raccoons (Procyon lotor). Raboral V-RG® fishmeal polymer baits (Merial Inc. (now a part of Boehringer Ingelheim), Athens, Georgia) contain a tetracycline biomarker that was used to estimate bait consumption as another measure of intervention impact. Our results suggest that raccoon RVNA response increases as bait density increases, but the effect may not be sufficient to justify the cost except in the case of contingency actions or an epizootic. Non-target species, especially opossums (Didelphis virginianus) in certain areas, should be considered when determining an appropriate bait density to ensure sufficient baits are available for consumption by the target species.

10.
Am J Trop Med Hyg ; 76(1): 173-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17255248

RESUMO

Sera from 936 mammalian mesopredators (Virginia opossums, gray foxes, striped skunks, hooded skunks, raccoons, a bobcat, and a red fox) were collected during 2003 and 2004 in California, Arizona, Texas, Louisiana, Ohio, and Wyoming and screened for flavivirus-specific antibodies by an epitope-blocking enzyme-linked immunosorbent assay (blocking ELISA). Serum samples positive for antibodies against flaviviruses were screened for West Nile virus (WNV)-specific antibodies by blocking ELISA and selectively confirmed with plaque-reduction neutralization tests. High prevalence rates were observed in raccoons (45.6%) and striped skunks (62.9%). The high WNV antibody prevalence noted in mesopredators, their peridomestic tendencies, and their overall pervasiveness make these species potentially useful sentinels for monitoring flaviviruses in defined areas.


Assuntos
Mamíferos/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Anticorpos Antivirais/sangue , Mamíferos/imunologia , Estudos Soroepidemiológicos , Estados Unidos/epidemiologia , Ensaio de Placa Viral , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/imunologia
11.
J Wildl Dis ; 52(3): 478-83, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27187032

RESUMO

Using filter paper to collect blood from wildlife for antibody analysis can be a powerful technique to simplify the collection, transport, and storage of blood samples. Despite these advantages, there are limited data that detail how long these samples can be stored and how storage conditions affect antibody longevity. We used blood samples collected on filter paper from coyotes experimentally infected with Yersinia pestis to determine optimum sample storage conditions over time. Blood samples collected on filter paper were stored for 454 d or more in four groups: 1) at ambient temperature and at ambient relative humidity, 2) at ambient temperature with desiccant, 3) at 4 C with desiccant, and 4) at -20 C with desiccant. Samples stored at 4 C or -20 C with desiccant had detectable antibody for a longer period of time than the samples stored at room temperature.


Assuntos
Animais Selvagens , Anticorpos/análise , Animais , Coiotes , Papel , Manejo de Espécimes , Temperatura , Yersinia pestis
12.
PLoS One ; 9(8): e104360, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25116079

RESUMO

Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies.


Assuntos
Animais Selvagens , Aves/virologia , Vírus da Influenza A , Influenza Aviária/epidemiologia , Animais , Geografia Médica , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vigilância da População , Prevalência , Estados Unidos/epidemiologia , Proteínas da Matriz Viral/genética
13.
Vet Microbiol ; 166(1-2): 1-10, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23548760

RESUMO

Brucellosis is a common infection of feral swine throughout the United States. With the recent expansion of feral swine populations across the country, this disease poses an increasing threat to agriculture and hunters. The standard approach to Brucella surveillance in feral swine has been serological testing, which gives an indication of past exposure and is a rapid method of determining populations where Brucella is present. More in-depth analyses require bacterial isolation to determine the Brucella species and biovar involved. Ultimately, for a comprehensive understanding of Brucella epizootiology in feral swine, incorporation of genotyping assays has become essential. Fortunately, the past decade has given rise to an array of genetic tools for assessing Brucella transmission and dispersal. This review aims to synthesize what is known about brucellosis in feral swine and will cover prospective genomic techniques that may be utilized to develop more complete understanding of the disease and its transmission history.


Assuntos
Brucella/genética , Brucella/isolamento & purificação , Brucelose/veterinária , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Animais , Brucella/classificação , Brucella/fisiologia , Brucelose/epidemiologia , Brucelose/microbiologia , Genômica , Suínos , Doenças dos Suínos/transmissão , Estados Unidos/epidemiologia
14.
J Wildl Dis ; 46(3): 1024-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20688717

RESUMO

A captive striped skunk (Mephitis mephitis) study was conducted between February and June 2004 at the United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center, Fort Collins, Colorado, USA. The main objective was to determine the percentage of adult striped skunks that were marked after consuming placebo oral rabies vaccine (ORV) baits containing 100 mg of an experimental microencapsulated (coated microparticle) tetracycline hydrochloride biomarker. Biomarkers were identified in the canine teeth and mandibles of five of five skunks that consumed an ORV bait. A second objective was to determine if the microencapsulated tetracycline was resistant to photochemical conversion from tetracycline to epitetracycline. After 15 days of exposure, conversion from tetracycline to epitetracycline concentration in the microencapsulated product (mean 1.9% conversion, SD=1.24) was significantly less (P=0.006) than the pure-grade tetracycline powder (mean 7.5% conversion, SD=1.37). Results support the use of microencapsulated tetracycline hydrochloride as a biomarker in circumstances where the use of conventional powdered tetracycline hydrochloride is not feasible due to ORV bait design constraints.


Assuntos
Mephitidae , Vacina Antirrábica/administração & dosagem , Raiva/veterinária , Tetraciclina/administração & dosagem , Vacinação/veterinária , Administração Oral , Animais , Animais Selvagens/virologia , Biomarcadores , Composição de Medicamentos/veterinária , Raiva/prevenção & controle , Vacinação/métodos
15.
Integr Zool ; 4(4): 426-39, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21392315

RESUMO

As part of the USA's National Strategy for Pandemic Influenza, an Interagency Strategic Plan for the Early Detection of Highly Pathogenic H5N1 Avian Influenza in Wild Migratory Birds was developed and implemented. From 1 April 2006 through 31 March 2009, 261,946 samples from wild birds and 101,457 wild bird fecal samples were collected in the USA; no highly pathogenic avian influenza was detected. The United States Department of Agriculture, and state and tribal cooperators accounted for 213,115 (81%) of the wild bird samples collected; 31, 27, 21 and 21% of the samples were collected from the Atlantic, Pacific, Central and Mississippi flyways, respectively. More than 250 species of wild birds in all 50 states were sampled. The majority of wild birds (86%) were dabbling ducks, geese, swans and shorebirds. The apparent prevalence of low pathogenic avian influenza viruses during biological years 2007 and 2008 was 9.7 and 11.0%, respectively. The apparent prevalence of H5 and H7 subtypes across all species sampled were 0.5 and 0.06%, respectively. The pooled fecal samples (n= 101,539) positive for low pathogenic avian influenza were 4.0, 6.7 and 4.7% for biological years 2006, 2007 and 2008, respectively. The highly pathogenic early detection system for wild birds developed and implemented in the USA represents the largest coordinated wildlife disease surveillance system ever conducted. This effort provided evidence that wild birds in the USA were free of highly pathogenic avian influenza virus (given the expected minimum prevalence of 0.001%) at the 99.9% confidence level during the surveillance period.


Assuntos
Animais Selvagens , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/epidemiologia , Animais , Aves , Influenza Aviária/virologia , Vigilância da População , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA