RESUMO
Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ.
Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Ribossomos/genética , Ribossomos/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , MamíferosRESUMO
OBJECTIVE: Bradykinesia and rigidity are considered closely related motor signs in Parkinson disease (PD), but recent neurophysiological findings suggest distinct pathophysiological mechanisms. This study aims to examine and compare longitudinal changes in bradykinesia and rigidity in PD patients treated with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: In this retrospective cohort study, the clinical progression of appendicular and axial bradykinesia and rigidity was assessed up to 15 years after STN-DBS in the best treatment conditions (ON medication and ON stimulation). The severity of bradykinesia and rigidity was examined using ad hoc composite scores from specific subitems of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III). Short- and long-term predictors of bradykinesia and rigidity were analyzed through linear regression analysis, considering various preoperative demographic and clinical data, including disease duration and severity, phenotype, motor and cognitive scores (eg, frontal score), and medication. RESULTS: A total of 301 patients were examined before and 1 year after surgery. Among them, 101 and 56 individuals were also evaluated at 10-year and 15-year follow-ups, respectively. Bradykinesia significantly worsened after surgery, especially in appendicular segments (p < 0.001). Conversely, rigidity showed sustained benefit, with unchanged clinical scores compared to preoperative assessment (p > 0.05). Preoperative motor disability (eg, composite scores from the UPDRS-III) predicted short- and long-term outcomes for both bradykinesia and rigidity (p < 0.01). Executive dysfunction was specifically linked to bradykinesia but not to rigidity (p < 0.05). INTERPRETATION: Bradykinesia and rigidity show long-term divergent progression in PD following STN-DBS and are associated with independent clinical factors, supporting the hypothesis of partially distinct pathophysiology. ANN NEUROL 2024;96:234-246.
Assuntos
Estimulação Encefálica Profunda , Hipocinesia , Rigidez Muscular , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Masculino , Feminino , Hipocinesia/etiologia , Hipocinesia/fisiopatologia , Pessoa de Meia-Idade , Núcleo Subtalâmico/fisiopatologia , Rigidez Muscular/etiologia , Rigidez Muscular/fisiopatologia , Idoso , Estudos Retrospectivos , Progressão da Doença , Estudos de CoortesRESUMO
BACKGROUND: Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS: We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS: Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION: This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.
Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Deficiência Intelectual , Humanos , Masculino , Feminino , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , França/epidemiologia , Criança , DNA (Citosina-5-)-Metiltransferases/genética , Pré-Escolar , Adolescente , Mutação em Linhagem Germinativa/genética , Adulto , Fenótipo , Adulto Jovem , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , LactenteRESUMO
The autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS: OMIM #617062) is a rare neurodevelopmental disorder first described in 2016. Features include developmental delay (DD), intellectual disability (ID), behavioral problems, hypotonia, language deficits, congenital heart abnormalities, and non-specific dysmorphic facial features. OCNDS is caused by heterozygous pathogenic variants in CSNK2A1 (OMIM *115440; NM_177559.3). To date, 160 patients have been diagnosed worldwide. The number will likely increase due to the growing use of exome sequencing (ES) and genome sequencing (GS). Here, we describe a novel OCNDS patient carrying a CSNK2A1 variant (NM_177559.3:c.140G>A; NP_808227.1:p.Arg47Gln). Phenotypically, he presented with DD, ID, generalized hypotonia, speech delay, short stature, microcephaly, and dysmorphic features such as low-set ears, hypertelorism, thin upper lip, and a round face. The patient showed several signs not yet described that may extend the phenotypic spectrum of OCNDS. These include prenatal bilateral clubfeet, exotropia, and peg lateral incisors. However, unlike the majority of descriptions, he did not present sleep disturbance, seizures or gait difficulties. A literature review shows phenotypic heterogeneity for OCNDS, whether these patients have the same variant or not. This case report is an opportunity to refine the phenotype of this syndrome and raise the question of the genotype-phenotype correlation.
Assuntos
Caseína Quinase II , Transtornos do Neurodesenvolvimento , Criança , Humanos , Masculino , Caseína Quinase II/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/diagnóstico , FenótipoRESUMO
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. In eukaryotes, the role of eIF5B in ribosomal subunit joining is established and structural data showing eIF5B bound to the full ribosome were obtained. To achieve its function, eIF5B collaborates with eIF1A. However, structural data illustrating how these two factors interact on the small ribosomal subunit have long been awaited. The role of the archaeal counterparts, aIF5B and aIF1A, remains to be extensively addressed. Here, we study the late steps of Pyrococcus abyssi translation initiation. Using in vitro reconstituted initiation complexes and light scattering, we show that aIF5B bound to GTP accelerates subunit joining without the need for GTP hydrolysis. We report the crystallographic structures of aIF5B bound to GDP and GTP and analyze domain movements associated to these two nucleotide states. Finally, we present the cryo-EM structure of an initiation complex containing 30S bound to mRNA, Met-tRNAiMet, aIF5B and aIF1A at 2.7 Å resolution. Structural data shows how archaeal 5B and 1A factors cooperate to induce a conformation of the initiator tRNA favorable to subunit joining. Archaeal and eukaryotic features of late steps of translation initiation are discussed.
Assuntos
Archaea , Fatores de Iniciação em Eucariotos , Archaea/genética , Fatores de Iniciação em Eucariotos/metabolismo , Guanosina Trifosfato/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA de Transferência de Metionina/metabolismo , Ribossomos/metabolismoRESUMO
Eukaryotic initiation factor 2 (eIF2) plays a key role in protein synthesis and in its regulation. The assembly of this heterotrimeric factor is facilitated by Cdc123, a member of the ATP grasp family that binds the γ subunit of eIF2. Notably, some mutations related to MEHMO syndrome, an X-linked intellectual disability, affect Cdc123-mediated eIF2 assembly. The mechanism of action of Cdc123 is unclear and structural information for the human protein is awaited. Here, the crystallographic structure of human Cdc123 (Hs-Cdc123) bound to domain 3 of human eIF2γ (Hs-eIF2γD3) was determined. The structure shows that the domain 3 of eIF2γ is bound to domain 1 of Cdc123. In addition, the long C-terminal region of Hs-Cdc123 provides a link between the ATP and Hs-eIF2γD3 binding sites. A thermal shift assay shows that ATP is tightly bound to Cdc123 whereas the affinity of ADP is much smaller. Yeast cell viability experiments, western blot analysis and two-hybrid assays show that ATP is important for the function of Hs-Cdc123 in eIF2 assembly. These data and recent findings allow us to propose a refined model to explain the mechanism of action of Cdc123 in eIF2 assembly.
Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Proteínas de Saccharomyces cerevisiae , Humanos , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/químicaRESUMO
BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by mutations in the C19orf12 gene. MPAN typically appears in the first two decades of life and presents with progressive dystonia-parkinsonism, lower motor neuron signs, optic atrophy, and abnormal iron deposits predominantly in the basal ganglia. MPAN, initially considered as a strictly autosomal recessive disease (AR), turned out to be also dominantly inherited (AD). OBJECTIVES: Our aim was to better characterize the clinical, molecular, and functional spectra associated with such dominant pathogenic heterozygous C19orf12 variants. METHODS: We collected clinical, imaging, and molecular information of eight individuals from four AD-MPAN families and obtained brain neuropathology results for one. Functional studies, focused on energy and iron metabolism, were conducted on fibroblasts from AD-MPAN patients, AR-MPAN patients, and controls. RESULTS: We identified four heterozygous C19orf12 variants in eight AD-MPAN patients. Two of them carrying the familial variant in mosaic displayed an atypical late-onset phenotype. Fibroblasts from AD-MPAN showed more severe alterations of iron storage metabolism and autophagy compared to AR-MPAN cells. CONCLUSION: Our data add strong evidence of the realness of AD-MPAN with identification of novel monoallelic C19orf12 variants, including at the mosaic state. This has implications in diagnosis procedures. We also expand the phenotypic spectrum of MPAN to late onset atypical presentations. Finally, we demonstrate for the first time more drastic abnormalities of iron metabolism and autophagy in AD-MPAN than in AR-MPAN. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Mosaicismo , Transtornos dos Movimentos , Humanos , Proteínas Mitocondriais/genética , Ferro/metabolismo , Mutação/genética , Proteínas de Membrana/genética , FenótipoRESUMO
BACKGROUND: The HIT-SKK protocol is used for low/standard-risk medulloblastomas in young children with the aim to eliminate cranial irradiation and its neuropsychological (NP) sequelae. This therapy includes IV and intraventricular (ITV) methotrexate (MTX) potentially responsible for leukoencephalopathy (LE) and neurocognitive disorders. This study describes the risk factors and course of LE, and investigates its correlation with neurocognitive impact. METHODS: A retrospective, multicenter study was conducted in 35 children under 5 years old, with a median follow-up of 72 months (range 14 to 130). The main analysis was performed in 30 patients who received cumulative doses of MTX as per-protocol (group 1). Five patients who received higher cumulative doses of MTX were analyzed separately. All follow-up MRIs and NP assessments were centrally reviewed by experts. RESULTS: Twenty patients in group 1 developed LE, grade 2 and 3 abnormalities did not correlate with higher cumulative doses of ITV-MTX (p = 0.698). Considering the most recent NP evaluation, the Full-Scale IQ (FSIQ) and Wechsler indices were in the average to lower average range. The FSIQ was deficient in 6/17 evaluable patients. Cumulative dose of ITV-MTX was almost associated with decreased processing speed competence (p = 0.055) which was the most frequently impaired neurocognitive domain. Neuropsychological assessment scores were not statistically lower in patients with persistent grade 2 LE at the end of follow-up. CONCLUSION: This study described that the use of cumulative dose of MTX (IV and ITV) according to the HIT-SKK protocol resulted in LE that tented to decrease over time, without significant correlation with a decline in neuro-intellectual skills.
Assuntos
Neoplasias Cerebelares , Leucoencefalopatias , Meduloblastoma , Criança , Humanos , Pré-Escolar , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/tratamento farmacológico , Estudos Retrospectivos , Seguimentos , Metotrexato/efeitos adversos , Neoplasias Cerebelares/tratamento farmacológico , Estudos Multicêntricos como AssuntoRESUMO
G-quadruplex (G4) DNA structures with a left-handed backbone progression have unique and conserved structural features. Studies on sequence dependency of the structures revealed the prerequisites and some minimal motifs required for left-handed G4 formation. To extend the boundaries, we explore the adaptability of left-handed G4s towards the existence of bulges. Here we present two X-ray crystal structures and an NMR solution structure of left-handed G4s accommodating one, two and three bulges. Bulges in left-handed G4s show distinct characteristics as compared to those in right-handed G4s. The elucidation of intricate structural details will help in understanding the possible roles and limitations of these unique structures.
Assuntos
DNA/química , Quadruplex G , Cristalografia por Raios X , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Motivos de Nucleotídeos , Açúcares/químicaRESUMO
We describe the first case of regression of a white epidermoid cyst in a child. White epidermoid cysts are rare benign lesions, particularly in pediatric cases. Typically, these cysts need surgical resection. However, we report the case of a 3-year-old child with recurrent aseptic meningitis, in whom CT scan and MRI revealed a white epidermoid cyst in the pre-bulbar cistern. Surprisingly, over a 5-year follow-up period, the cyst showed dramatic regression without any symptoms. This case sheds light on the potential for spontaneous regression of white epidermoid cysts in children, challenging the need for risky surgical interventions. This report opens up new perspectives on the pathophysiology and management options for this type of lesion in children.
Assuntos
Cisto Epidérmico , Meningite Asséptica , Humanos , Criança , Pré-Escolar , Cisto Epidérmico/diagnóstico por imagem , Cisto Epidérmico/cirurgia , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios XRESUMO
ATL1-related spastic paraplegia SPG3A is a pure form of hereditary spastic paraplegia. Rare complex phenotypes have been described, but few data concerning cognitive evaluation or molecular imaging of these patients are available. We relate a retrospective collection of patients with SPG3A from the Neurology Department of Nancy University Hospital, France. For each patient were carried out a 18F-FDG PET (positron emission tomography), a electromyography (EMG), a sudoscan®, a cerebral and spinal cord MRI (magnetic resonance imaging) with measurement of cervical and thoracic surfaces, a neuropsychological assessment. The present report outlines standardised clinical and paraclinical data of five patients from two east-France families carrying the same missense pathogenic variation, NM_015915.4(ATL1): c.1483C > T p.(Arg495Trp) in ATL1. Mean age at onset was 14 ± 15.01 years. Semi-quantitatively and in comparison to healthy age-matched subjects, PET scans showed a significant cerebellar and upper or mild temporal hypometabolism in all four adult patients and hypometabolism of the prefrontal cortex or precuneus in three of them. Sudoscan® showed signs of small fibre neuropathy in three patients. Cervical and thoracic patients' spinal cords were significantly thinner than matched-control, respectively 71 ± 6.59mm2 (p = 0.01) and 35.64 ± 4.35mm2 (p = 0.015). Two patients presented with a dysexecutive syndrome. While adding new clinical and paraclinical signs associated with ATL1 pathogenic variations, we insist here on the variable penetrance and expressivity. We report small fibre neuropathy, cerebellar hypometabolism and dysexecutive syndromes associated with SPG3A. These cognitive impairments and PET findings may be related to a cortico-cerebellar bundle axonopathy described in the cerebellar cognitive affective syndrome (CCAS).
Assuntos
Neuropatia de Pequenas Fibras , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Fluordesoxiglucose F18 , Análise Mutacional de DNA , Penetrância , Estudos Retrospectivos , Linhagem , Proteínas de Ligação ao GTP/genética , Proteínas de Membrana/genética , Mutação , Fenótipo , Encéfalo/diagnóstico por imagemRESUMO
The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5ß1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.
Assuntos
Centrossomo/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Modelos Moleculares , PrognósticoRESUMO
Cyclodipeptide synthases (CDPSs) catalyze the synthesis of various cyclodipeptides by using two aminoacyl-tRNA (aa-tRNA) substrates in a sequential mechanism. Here, we studied binding of phenylalanyl-tRNAPhe to the CDPS from Candidatus Glomeribacter gigasporarum (Cglo-CDPS) by gel filtration and electrophoretic mobility shift assay. We determined the crystal structure of the Cglo-CDPS:Phe-tRNAPhe complex to 5 Å resolution and further studied it in solution using small-angle X-ray scattering (SAXS). The data show that the major groove of the acceptor stem of the aa-tRNA interacts with the enzyme through the basic ß2 and ß7 strands of CDPSs belonging to the XYP subfamily. A bending of the CCA extremity enables the amino acid moiety to be positioned in the P1 pocket while the terminal A76 adenosine occupies the P2 pocket. Such a positioning indicates that the present structure illustrates the binding of the first aa-tRNA. In cells, CDPSs and the elongation factor EF-Tu share aminoacylated tRNAs as substrates. The present study shows that CDPSs and EF-Tu interact with opposite sides of tRNA. This may explain how CDPSs hijack aa-tRNAs from canonical ribosomal protein synthesis.
Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Burkholderiaceae/efeitos dos fármacos , Burkholderiaceae/genética , Cromatografia em Gel , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
OBJECTIVE: This study was undertaken to identify preoperative predictive factors of long-term motor outcome in a large cohort of consecutive Parkinson disease (PD) patients with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: All consecutive PD patients who underwent bilateral STN-DBS at the Grenoble University Hospital (France) from 1993 to 2015 were evaluated before surgery, at 1 year (short-term), and in the long term after surgery. All available demographic variables, neuroimaging data, and clinical characteristics were collected. Preoperative predictors of long-term motor outcome were investigated by performing survival and univariate/multivariate Cox regression analyses. Loss of motor benefit from stimulation in the long term was defined as a reduction of less than 25% in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III scores compared to the baseline off-medication scores. As a secondary objective, potential predictors of short-term motor outcome after STN-DBS were assessed by performing univariate and multivariate linear regression analyses. RESULTS: In the long-term analyses (mean follow-up = 8.4 ± 6.26 years, median = 10 years, range = 1-17 years), 138 patients were included. Preoperative higher frontal score and off-medication MDS-UPDRS part III scores predicted a better long-term motor response to stimulation, whereas the presence of vascular changes on neuroimaging predicted a worse motor outcome. In 357 patients with available 1-year follow-up, preoperative levodopa response, tremor dominant phenotype, baseline frontal score, and off-medication MDS-UPDRS part III scores predicted the short-term motor outcome. INTERPRETATION: Frontal lobe dysfunction, disease severity in the off-medication condition, and the presence of vascular changes on neuroimaging represent the main preoperative clinical predictors of long-term motor STN-DBS effects. ANN NEUROL 2021;89:587-597.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson/terapia , Núcleo Subtalâmico , Adulto , Idoso , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/epidemiologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/psicologia , Função Executiva , Feminino , Seguimentos , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Testes Neuropsicológicos , Doença de Parkinson/epidemiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Prognóstico , Modelos de Riscos Proporcionais , Índice de Gravidade de Doença , Resultado do TratamentoRESUMO
BACKGROUND: De novo Parkinson's disease (PD) patients with apathy exhibit prominent limbic serotonergic dysfunction and microstructural disarray. Whether this distinctive lesion profile at diagnosis entails different prognosis remains unknown. OBJECTIVES: To investigate the progression of dopaminergic and serotonergic dysfunction and their relation to motor and nonmotor impairment in PD patients with or without apathy at diagnosis. METHODS: Thirteen de novo apathetic and 13 nonapathetic PD patients were recruited in a longitudinal double-tracer positron emission tomography cohort study. We quantified the progression of presynaptic dopaminergic and serotonergic pathology using [11 C]PE2I for dopamine transporter and [11 C]DASB for serotonin transporter at baseline and 3 to 5 years later, using linear mixed-effect models and mediation analysis to compare the longitudinal evolution between groups for clinical impairment and region-of-interest-based analysis. RESULTS: After the initiation of dopamine replacement therapy, apathy, depression, and anxiety improved at follow-up in patients with apathy at diagnosis (n = 10) to the level of patients without apathy (n = 11). Patients had similar progression of motor impairment, whereas mild impulsive behaviors developed in both groups. Striato-pallidal and mesocorticolimbic presynaptic dopaminergic loss progressed similarly in both groups, as did serotonergic pathology in the putamen, caudate nucleus, and pallidum. Contrastingly, serotonergic innervation selectively increased in the ventral striatum and anterior cingulate cortex in apathetic patients, contributing to the reversal of apathy besides dopamine replacement therapy. CONCLUSION: Patients suffering from apathy at diagnosis exhibit compensatory changes in limbic serotonergic innervation within 5 years of diagnosis, with promising evidence that serotonergic plasticity contributes to the reversal of apathy. The relationship between serotonergic plasticity and dopaminergic treatments warrants further longitudinal investigations. © 2022 International Parkinson and Movement Disorder Society.
Assuntos
Apatia , Doença de Parkinson , Estudos de Coortes , Dopamina , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodosRESUMO
BACKGROUND AND PURPOSE: Studies on long-term nonmotor outcomes of subthalamic nucleus stimulation in Parkinson disease (PD) are scarce. This study reports on very long-term non-motor and motor outcomes in one of the largest cohorts of people with advanced PD, treated for >10 years with subthalamic nucleus stimulation. The main outcome was to document the evolution of independence in activities of daily living. The secondary outcomes were to measure the change in quality of life, as well as non-motor and motor outcomes. METHODS: Patients were studied preoperatively, at 1 year, and beyond 10 years after subthalamic stimulation with an established protocol including motor, non-motor, and neuropsychological assessments. RESULTS: Eighty-five people with PD were included. Independence scores in the off-medication condition (measured with the Schwab & England Activities of Daily Living Scale) as well as quality of life (measured with the Parkinson's Disease Questionnaire [PDQ]-37) remained improved at longest follow-up compared to preoperatively (respectively, p < 0.001, p = 0.015). Cognitive scores, measured with the Mattis Dementia Rating Scale, significantly worsened compared to before and 1 year after surgery (p < 0.001), without significant change in depression, measured with the Beck Depression Inventory. Motor fluctuations, dyskinesias, and off dystonia remained improved at longest follow-up (p < 0.001), with a significant reduction in dopaminergic treatment (45%, p < 0.001). CONCLUSIONS: This study highlights the long-term improvement of subthalamic stimulation on independence and quality of life, despite the progression of disease and the occurrence of levodopa-resistant symptoms.
Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Atividades Cotidianas , Estimulação Encefálica Profunda/métodos , Seguimentos , Humanos , Doença de Parkinson/complicações , Qualidade de Vida , Resultado do TratamentoRESUMO
INTRODUCTION: In Parkinson's disease (PD), non-motor fluctuations (NMFs), especially neuropsychiatric fluctuations, often coexist with motor fluctuations (MFs) but are often under-recognized by physicians and patients. OBJECTIVE: To investigate the relationship between MFs and neuropsychiatric fluctuations in PD. METHODS: PD patients with MFs and NMFs were enrolled. The Parkinson's Kinetigraph (PKG), a wearable device to detect MFs and dyskinesia, was used to confirm and measure MFs. The Neuropsychiatric Fluctuation Scale (NFS), a scale composed by subscores for both the ON and OFF neuropsychiatric states, was used to identify and quantify neuropsychiatric fluctuations. Patients were asked to wear the PKG for six consecutive days to identify the ON and OFF motor periods, and then to fill the NFS during the ON and OFF motor periods for three consecutive days wearing the PKG. The PKG system provided a bradykinesia score (BKS) and a dyskinesia score (DKS). Relations between BKS, DKS, and ON and OFF NFS subscores were analyzed. RESULTS: In 18 PD patients, anxiety, apathy, and depression characterized the OFF condition, whereas self-confidence, competency, and interest in doing things were typically in the ON condition. There was a positive correlation between the BKS and the OFF NFS subscores (p = 0.036, r = 0.51), whereas no correlation was found between the DKS and the ON NFS subscores (p = 0.38, r = 0.22). CONCLUSION: Neuropsychiatric fluctuations temporarily matched the OFF MFs only in the OFF condition. These findings are useful to better manage OFF NMSs and support the need to further investigate associations between non-motor and motor symptoms in PD patients.
Assuntos
Discinesias , Doença de Parkinson , Transtornos de Ansiedade/complicações , Discinesias/etiologia , Humanos , Hipocinesia , Doença de Parkinson/diagnósticoRESUMO
Aminoacyl-tRNA synthetases (aaRS) are ubiquitously expressed enzymes responsible for ligating amino acids to their cognate tRNA molecules through an aminoacylation reaction. The resulting aminoacyl-tRNA is delivered to ribosome elongation factors to participate in protein synthesis. Seryl-tRNA synthetase (SARS1) is one of the cytosolic aaRSs and catalyzes serine attachment to tRNASer . SARS1 deficiency has already been associated with moderate intellectual disability, ataxia, muscle weakness, and seizure in one family. We describe here a new clinical presentation including developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death, in a consanguineous Turkish family, with biallelic variants (c.638G>T, p.(Arg213Leu)) in SARS1. This missense variant was shown to lead to protein instability, resulting in reduced protein level and enzymatic activity. Our results describe a new clinical entity and expand the clinical and mutational spectrum of SARS1 and aaRS deficiencies.
Assuntos
Aminoacil-tRNA Sintetases , Cardiomiopatias , Surdez , Aminoacil-tRNA Sintetases/genética , Aminoacilação , Cardiomiopatias/genética , Criança , Surdez/genética , Humanos , Perda de HeterozigosidadeRESUMO
Designed enzymes are of fundamental and technological interest. Experimental directed evolution still has significant limitations, and computational approaches are a complementary route. A designed enzyme should satisfy multiple criteria: stability, substrate binding, transition state binding. Such multi-objective design is computationally challenging. Two recent studies used adaptive importance sampling Monte Carlo to redesign proteins for ligand binding. By first flattening the energy landscape of the apo protein, they obtained positive design for the bound state and negative design for the unbound. We have now extended the method to design an enzyme for specific transition state binding, i.e., for its catalytic power. We considered methionyl-tRNA synthetase (MetRS), which attaches methionine (Met) to its cognate tRNA, establishing codon identity. Previously, MetRS and other synthetases have been redesigned by experimental directed evolution to accept noncanonical amino acids as substrates, leading to genetic code expansion. Here, we have redesigned MetRS computationally to bind several ligands: the Met analog azidonorleucine, methionyl-adenylate (MetAMP), and the activated ligands that form the transition state for MetAMP production. Enzyme mutants known to have azidonorleucine activity were recovered by the design calculations, and 17 mutants predicted to bind MetAMP were characterized experimentally and all found to be active. Mutants predicted to have low activation free energies for MetAMP production were found to be active and the predicted reaction rates agreed well with the experimental values. We suggest the present method should become the paradigm for computational enzyme design.
Assuntos
Enzimas , Método de Monte Carlo , Ligação Proteica/genética , Engenharia de Proteínas/métodos , Especificidade por Substrato/genética , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Azidas/química , Azidas/metabolismo , Sítios de Ligação/genética , Catálise , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Metionina/análogos & derivados , Metionina/química , Metionina/metabolismo , Metionina tRNA Ligase/química , Metionina tRNA Ligase/genética , Metionina tRNA Ligase/metabolismo , Mutação/genética , Norleucina/análogos & derivados , Norleucina/química , Norleucina/metabolismoRESUMO
Analogous to the B- and Z-DNA structures in double-helix DNA, there exist both right- and left-handed quadruple-helix (G-quadruplex) DNA. Numerous conformations of right-handed and a few left-handed G-quadruplexes were previously observed, yet they were always identified separately. Here, we present the NMR solution and X-ray crystal structures of a right- and left-handed hybrid G-quadruplex. The structure reveals a stacking interaction between two G-quadruplex blocks with different helical orientations and displays features of both right- and left-handed G-quadruplexes. An analysis of loop mutations suggests that single-nucleotide loops are preferred or even required for the left-handed G-quadruplex formation. The discovery of a right- and left-handed hybrid G-quadruplex further expands the polymorphism of G-quadruplexes and is potentially useful in designing a left-to-right junction in G-quadruplex engineering.