Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Nat Immunol ; 20(10): 1299-1310, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31534238

RESUMO

Resisting and tolerating microbes are alternative strategies to survive infection, but little is known about the evolutionary mechanisms controlling this balance. Here genomic analyses of anatomically modern humans, extinct Denisovan hominins and mice revealed a TNFAIP3 allelic series with alterations in the encoded immune response inhibitor A20. Each TNFAIP3 allele encoded substitutions at non-catalytic residues of the ubiquitin protease OTU domain that diminished IκB kinase-dependent phosphorylation and activation of A20. Two TNFAIP3 alleles encoding A20 proteins with partial phosphorylation deficits seemed to be beneficial by increasing immunity without causing spontaneous inflammatory disease: A20 T108A;I207L, originating in Denisovans and introgressed in modern humans throughout Oceania, and A20 I325N, from an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain. By contrast, a rare human TNFAIP3 allele encoding an A20 protein with 95% loss of phosphorylation, C243Y, caused spontaneous inflammatory disease in humans and mice. Analysis of the partial-phosphorylation A20 I325N allele in mice revealed diminished tolerance of bacterial lipopolysaccharide and poxvirus inoculation as tradeoffs for enhanced immunity.


Assuntos
Infecções por Poxviridae/imunologia , Poxviridae/fisiologia , Domínios Proteicos/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Alelos , Animais , Extinção Biológica , Humanos , Imunidade , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Fosforilação
2.
Physiol Rev ; 100(1): 103-144, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373863

RESUMO

In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.


Assuntos
Cóclea/fisiologia , Retina/fisiologia , Sinapses/fisiologia , Animais , Endocitose , Exocitose , Humanos , Transmissão Sináptica
3.
Nat Immunol ; 16(1): 67-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25419628

RESUMO

Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.


Assuntos
Histona-Lisina N-Metiltransferase/imunologia , NF-kappa B/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Pneumonia/imunologia , Superinfecção/imunologia , Animais , Quimiocina CXCL1/imunologia , Suscetibilidade a Doenças , Feminino , Interferon Tipo I/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/virologia , Pneumonia/enzimologia , Pneumonia/virologia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Organismos Livres de Patógenos Específicos , Superinfecção/enzimologia , Superinfecção/microbiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38957986

RESUMO

BACKGROUND: Tight control of cytoplasmic Ca2+ in endothelial cells is essential for the regulation of endothelial barrier function. Here, we investigated the role of Cavß3, a subunit of voltage-gated Ca2+ (Cav) channels, in modulating Ca2+ signaling in brain microvascular endothelial cells (BMECs) and how this contributes to the integrity of the blood-brain barrier. METHODS: We investigated the function of Cavß3 in BMECs by Ca2+ imaging and Western blot, examined the endothelial barrier function in vitro and the integrity of the blood-brain barrier in vivo, and evaluated disease course after induction of experimental autoimmune encephalomyelitis in mice using Cavß3-/- (Cav ß3-deficient) mice as controls. RESULTS: We identified Cavß3 protein in BMECs, but electrophysiological recordings did not reveal significant Cav channel activity. In vivo, blood-brain barrier integrity was reduced in the absence of Cavß3. After induction of experimental autoimmune encephalomyelitis, Cavß3-/- mice showed earlier disease onset with exacerbated clinical disability and increased T-cell infiltration. In vitro, the transendothelial resistance of Cavß3-/- BMEC monolayers was lower than that of wild-type BMEC monolayers, and the organization of the junctional protein ZO-1 (zona occludens-1) was impaired. Thrombin stimulates inositol 1,4,5-trisphosphate-dependent Ca2+ release, which facilitates cell contraction and enhances endothelial barrier permeability via Ca2+-dependent phosphorylation of MLC (myosin light chain). These effects were more pronounced in Cavß3-/- than in wild-type BMECs, whereas the differences were abolished in the presence of the MLCK (MLC kinase) inhibitor ML-7. Expression of Cacnb3 cDNA in Cavß3-/- BMECs restored the wild-type phenotype. Coimmunoprecipitation and mass spectrometry demonstrated the association of Cavß3 with inositol 1,4,5-trisphosphate receptor proteins. CONCLUSIONS: Independent of its function as a subunit of Cav channels, Cavß3 interacts with the inositol 1,4,5-trisphosphate receptor and is involved in the tight control of cytoplasmic Ca2+ and Ca2+-dependent MLC phosphorylation in BMECs, and this role of Cavß3 in BMECs contributes to blood-brain barrier integrity and attenuates the severity of experimental autoimmune encephalomyelitis disease.

5.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000549

RESUMO

Synaptic ribbons are the eponymous specializations of continuously active ribbon synapses. They are primarily composed of the RIBEYE protein that consists of a unique amino-terminal A-domain and carboxy-terminal B-domain that is largely identical to the ubiquitously expressed transcriptional regulator protein CtBP2. Both RIBEYE A-domain and RIBEYE B-domain are essential for the assembly of the synaptic ribbon, as shown by previous analyses of RIBEYE knockout and knockin mice and related investigations. How exactly the synaptic ribbon is assembled from RIBEYE subunits is not yet clear. To achieve further insights into the architecture of the synaptic ribbon, we performed analytical post-embedding immunogold-electron microscopy with direct gold-labelled primary antibodies against RIBEYE A-domain and RIBEYE B-domain for improved ultrastructural resolution. With direct gold-labelled monoclonal antibodies against RIBEYE A-domain and RIBEYE B-domain, we found that both domains show a very similar localization within the synaptic ribbon of mouse photoreceptor synapses, with no obvious differential gradient between the centre and surface of the synaptic ribbon. These data favour a model of the architecture of the synaptic ribbon in which the RIBEYE A-domain and RIBEYE B-domain are located similar distances from the midline of the synaptic ribbon.


Assuntos
Anticorpos Monoclonais , Sinapses , Animais , Camundongos , Sinapses/ultraestrutura , Sinapses/metabolismo , Anticorpos Monoclonais/imunologia , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Proteínas Correpressoras/metabolismo , Imuno-Histoquímica/métodos , Domínios Proteicos , Microscopia Imunoeletrônica/métodos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/imunologia
6.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339191

RESUMO

We generated a novel Cre mouse strain for cell-specific deletion of floxed genes in ribbon synapse-forming retinal neurons. Previous studies have shown that the RIBEYE promotor targets the expression of recombinant proteins such as fluorescently tagged RIBEYE to photoreceptors and retinal bipolar cells and generates fluorescent synaptic ribbons in situ in these neurons. Here, we used the same promotor to generate a novel transgenic mouse strain in which the RIBEYE promotor controls the expression of a Cre-ER(T2) recombinase (RIBEYE-Cre). To visualize Cre expression, the RIBEYE-Cre animals were crossed with ROSA26 tau-GFP (R26-τGFP) reporter mice. In the resulting RIBEYE-Cre/R26 τGFP animals, Cre-mediated removal of a transcriptional STOP cassette results in the expression of green fluorescent tau protein (tau-GFP) that binds to cellular microtubules. We detected robust tau-GFP expression in retinal bipolar cells. Surprisingly, we did not find fluorescent tau-GFP expression in mouse photoreceptors. The lack of tau-GFP reporter protein in these cells could be based on the previously reported absence of tau protein in mouse photoreceptors which could lead to the degradation of the recombinant tau protein. Consistent with this, we detected Cre and tau-GFP mRNA in mouse photoreceptor slices by RT-PCR. The transgenic RIBEYE-Cre mouse strain provides a new tool to study the deletion of floxed genes in ribbon synapse-forming neurons of the retina and will also allow for analyzing gene deletions that are lethal if globally deleted in neurons.


Assuntos
Neurônios Retinianos , Proteínas tau , Camundongos , Animais , Proteínas tau/metabolismo , Camundongos Transgênicos , Neurônios Retinianos/metabolismo , Sinapses/metabolismo , Integrases/genética , Integrases/metabolismo , Proteínas de Fluorescência Verde/metabolismo
7.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675155

RESUMO

Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Doenças Neuroinflamatórias , Encéfalo , Sinapses
8.
Blood ; 135(13): 996-1007, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31977002

RESUMO

Treatment options for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) are limited, with no standard of care; prognosis is poor, with 4- to 6-month median survival. Avadomide (CC-122) is a cereblon-modulating agent with immunomodulatory and direct antitumor activities. This phase 1 dose-expansion study assessed safety and clinical activity of avadomide monotherapy in patients with de novo R/R DLBCL and transformed lymphoma. Additionally, a novel gene expression classifier, which identifies tumors with a high immune cell infiltration, was shown to enrich for response to avadomide in R/R DLBCL. Ninety-seven patients with R/R DLBCL, including 12 patients with transformed lymphoma, received 3 to 5 mg avadomide administered on continuous or intermittent schedules until unacceptable toxicity, disease progression, or withdrawal. Eighty-two patients (85%) experienced ≥1 grade 3/4 treatment-emergent adverse events (AEs), most commonly neutropenia (51%), infections (24%), anemia (12%), and febrile neutropenia (10%). Discontinuations because of AEs occurred in 10% of patients. Introduction of an intermittent 5/7-day schedule improved tolerability and reduced frequency and severity of neutropenia, febrile neutropenia, and infections. Among 84 patients with de novo R/R DLBCL, overall response rate (ORR) was 29%, including 11% complete response (CR). Responses were cell-of-origin independent. Classifier-positive DLBCL patients (de novo) had an ORR of 44%, median progression-free survival (mPFS) of 6 months, and 16% CR vs an ORR of 19%, mPFS of 1.5 months, and 5% CR in classifier-negative patients (P = .0096). Avadomide is being evaluated in combination with other antilymphoma agents. This trial was registered at www.clinicaltrials.gov as #NCT01421524.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Piperidonas/uso terapêutico , Quinazolinonas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Biomarcadores , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Imunofenotipagem , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Razão de Chances , Piperidonas/administração & dosagem , Piperidonas/efeitos adversos , Piperidonas/farmacocinética , Prognóstico , Quinazolinonas/administração & dosagem , Quinazolinonas/efeitos adversos , Quinazolinonas/farmacocinética , Recidiva , Retratamento , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento
9.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806143

RESUMO

The Unc119 protein mediates transport of myristoylated proteins to the photoreceptor outer segment, a specialized primary cilium. This transport activity is regulated by the GTPase Arl3 as well as by Arl13b and Rp2 that control Arl3 activation/inactivation. Interestingly, Unc119 is also enriched in photoreceptor synapses and can bind to RIBEYE, the main component of synaptic ribbons. In the present study, we analyzed whether the known regulatory proteins, that control the Unc119-dependent myristoylated protein transport at the primary cilium, are also present at the photoreceptor synaptic ribbon complex by using high-resolution immunofluorescence and immunogold electron microscopy. We found Arl3 and Arl13b to be enriched at the synaptic ribbon whereas Rp2 was predominantly found on vesicles distributed within the entire terminal. These findings indicate that the synaptic ribbon could be involved in the discharge of Unc119-bound lipid-modified proteins. In agreement with this hypothesis, we found Nphp3 (Nephrocystin-3), a myristoylated, Unc119-dependent cargo protein enriched at the basal portion of the ribbon in close vicinity to the active zone. Mutations in Nphp3 are known to be associated with Senior-Løken Syndrome 3 (SLS3). Visual impairment and blindness in SLS3 might thus not only result from ciliary dysfunctions but also from malfunctions of the photoreceptor synapse.


Assuntos
Ciliopatias , Sinapses , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciliopatias/metabolismo , Proteínas Correpressoras/metabolismo , Humanos , Fosfoproteínas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo
10.
PLoS Biol ; 16(12): e2006838, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30586380

RESUMO

The disc-large (DLG)-membrane-associated guanylate kinase (MAGUK) family of proteins forms a central signaling hub of the glutamate receptor complex. Among this family, some proteins regulate developmental maturation of glutamatergic synapses, a process vulnerable to aberrations, which may lead to neurodevelopmental disorders. As is typical for paralogs, the DLG-MAGUK proteins postsynaptic density (PSD)-95 and PSD-93 share similar functional domains and were previously thought to regulate glutamatergic synapses similarly. Here, we show that they play opposing roles in glutamatergic synapse maturation. Specifically, PSD-95 promoted, whereas PSD-93 inhibited maturation of immature α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor (AMPAR)-silent synapses in mouse cortex during development. Furthermore, through experience-dependent regulation of its protein levels, PSD-93 directly inhibited PSD-95's promoting effect on silent synapse maturation in the visual cortex. The concerted function of these two paralogs governed the critical period of juvenile ocular dominance plasticity (jODP), and fine-tuned visual perception during development. In contrast to the silent synapse-based mechanism of adjusting visual perception, visual acuity improved by different mechanisms. Thus, by controlling the pace of silent synapse maturation, the opposing but properly balanced actions of PSD-93 and PSD-95 are essential for fine-tuning cortical networks for receptive field integration during developmental critical periods, and imply aberrations in either direction of this process as potential causes for neurodevelopmental disorders.


Assuntos
Proteína 4 Homóloga a Disks-Large/fisiologia , Guanilato Quinases/fisiologia , Proteínas de Membrana/fisiologia , Sinapses/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios , Feminino , Ácido Glutâmico/metabolismo , Guanilato Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Transmissão Sináptica/fisiologia , Córtex Visual/metabolismo
11.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639129

RESUMO

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that finally leads to demyelination. Demyelinating optic neuritis is a frequent symptom in MS. Recent studies also revealed synapse dysfunctions in MS patients and MS mouse models. We previously reported alterations of photoreceptor ribbon synapses in the experimental auto-immune encephalomyelitis (EAE) mouse model of MS. In the present study, we found that the previously observed decreased imunosignals of photoreceptor ribbons in early EAE resulted from a decrease in synaptic ribbon size, whereas the number/density of ribbons in photoreceptor synapses remained unchanged. Smaller photoreceptor ribbons are associated with fewer docked and ribbon-associated vesicles. At a functional level, depolarization-evoked exocytosis as monitored by optical recording was diminished even as early as on day 7 after EAE induction. Moreover compensatory, post-depolarization endocytosis was decreased. Decreased post-depolarization endocytosis in early EAE correlated with diminished synaptic enrichment of dynamin3. In contrast, basal endocytosis in photoreceptor synapses of resting non-depolarized retinal slices was increased in early EAE. Increased basal endocytosis correlated with increased de-phosphorylation of dynamin1. Thus, multiple endocytic pathways in photoreceptor synapse are differentially affected in early EAE and likely contribute to the observed synapse pathology in early EAE.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Endocitose , Exocitose , Esclerose Múltipla/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Sinapses/patologia , Animais , Dinaminas/metabolismo , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Fosforilação , Retina/metabolismo , Retina/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia
12.
PLoS Med ; 17(11): e1003323, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33147277

RESUMO

BACKGROUND: The tumor microenvironment (TME) is increasingly appreciated as an important determinant of cancer outcome, including in multiple myeloma (MM). However, most myeloma microenvironment studies have been based on bone marrow (BM) aspirates, which often do not fully reflect the cellular content of BM tissue itself. To address this limitation in myeloma research, we systematically characterized the whole bone marrow (WBM) microenvironment during premalignant, baseline, on treatment, and post-treatment phases. METHODS AND FINDINGS: Between 2004 and 2019, 998 BM samples were taken from 436 patients with newly diagnosed MM (NDMM) at the University of Arkansas for Medical Sciences in Little Rock, Arkansas, United States of America. These patients were 61% male and 39% female, 89% White, 8% Black, and 3% other/refused, with a mean age of 58 years. Using WBM and matched cluster of differentiation (CD)138-selected tumor gene expression to control for tumor burden, we identified a subgroup of patients with an adverse TME associated with 17 fewer months of progression-free survival (PFS) (95% confidence interval [CI] 5-29, 49-69 versus 70-82 months, χ2 p = 0.001) and 15 fewer months of overall survival (OS; 95% CI -1 to 31, 92-120 versus 113-129 months, χ2 p = 0.036). Using immunohistochemistry-validated computational tools that identify distinct cell types from bulk gene expression, we showed that the adverse outcome was correlated with elevated CD8+ T cell and reduced granulocytic cell proportions. This microenvironment develops during the progression of premalignant to malignant disease and becomes less prevalent after therapy, in which it is associated with improved outcomes. In patients with quantified International Staging System (ISS) stage and 70-gene Prognostic Risk Score (GEP-70) scores, taking the microenvironment into consideration would have identified an additional 40 out of 290 patients (14%, premutation p = 0.001) with significantly worse outcomes (PFS, 95% CI 6-36, 49-73 versus 74-90 months) who were not identified by existing clinical (ISS stage III) and tumor (GEP-70) criteria as high risk. The main limitations of this study are that it relies on computationally identified cell types and that patients were treated with thalidomide rather than current therapies. CONCLUSIONS: In this study, we observe that granulocyte signatures in the MM TME contribute to a more accurate prognosis. This implies that future researchers and clinicians treating patients should quantify TME components, in particular monocytes and granulocytes, which are often ignored in microenvironment studies.


Assuntos
Medula Óssea/patologia , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Microambiente Tumoral , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Prognóstico , Carga Tumoral
13.
EMBO J ; 35(10): 1098-114, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-26929012

RESUMO

Synaptic ribbons are large proteinaceous scaffolds at the active zone of ribbon synapses that are specialized for rapid sustained synaptic vesicles exocytosis. A single ribbon-specific protein is known, RIBEYE, suggesting that ribbons may be constructed from RIBEYE protein. RIBEYE knockdown in zebrafish, however, only reduced but did not eliminate ribbons, indicating a more ancillary role. Here, we show in mice that full deletion of RIBEYE abolishes all presynaptic ribbons in retina synapses. Using paired recordings in acute retina slices, we demonstrate that deletion of RIBEYE severely impaired fast and sustained neurotransmitter release at bipolar neuron/AII amacrine cell synapses and rendered spontaneous miniature release sensitive to the slow Ca(2+)-buffer EGTA, suggesting that synaptic ribbons mediate nano-domain coupling of Ca(2+) channels to synaptic vesicle exocytosis. Our results show that RIBEYE is essential for synaptic ribbons as such, and may organize presynaptic nano-domains that position release-ready synaptic vesicles adjacent to Ca(2+) channels.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fosfoproteínas/fisiologia , Retina/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Oxirredutases do Álcool , Animais , Cálcio/fisiologia , Canais de Cálcio/fisiologia , Proteínas Correpressoras , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Camundongos Transgênicos , Neurotransmissores , Fosfoproteínas/genética
14.
Nature ; 490(7420): 421-5, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-22982991

RESUMO

Antiviral responses must be tightly regulated to defend rapidly against infection while minimizing inflammatory damage. Type 1 interferons (IFN-I) are crucial mediators of antiviral responses and their transcription is regulated by a variety of transcription factors; principal among these is the family of interferon regulatory factors (IRFs). The IRF gene regulatory networks are complex and contain multiple feedback loops. The tools of systems biology are well suited to elucidate the complex interactions that give rise to precise coordination of the interferon response. Here we have used an unbiased systems approach to predict that a member of the forkhead family of transcription factors, FOXO3, is a negative regulator of a subset of antiviral genes. This prediction was validated using macrophages isolated from Foxo3-null mice. Genome-wide location analysis combined with gene deletion studies identified the Irf7 gene as a critical target of FOXO3. FOXO3 was identified as a negative regulator of Irf7 transcription and we have further demonstrated that FOXO3, IRF7 and IFN-I form a coherent feed-forward regulatory circuit. Our data suggest that the FOXO3-IRF7 regulatory circuit represents a novel mechanism for establishing the requisite set points in the interferon pathway that balances the beneficial effects and deleterious sequelae of the antiviral response.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Inflamação/patologia , Fator Regulador 7 de Interferon/metabolismo , Vesiculovirus/imunologia , Animais , Feminino , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Inflamação/genética , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Interferon Tipo I/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
15.
Biochem J ; 474(7): 1205-1220, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28202712

RESUMO

Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD+, the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes.


Assuntos
Proteínas do Olho/metabolismo , NAD/metabolismo , Fosfolipídeos/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Bovinos , Clorofórmio , Colesterol/química , Colesterol/metabolismo , Proteínas do Olho/química , Proteínas do Olho/genética , Expressão Gênica , Lipossomos/química , Lipossomos/metabolismo , Metanol , NAD/química , Oxirredução , Fosfolipídeos/química , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retina/química , Solventes , Sinapses/química , Vesículas Sinápticas/química
16.
J Neurosci ; 36(8): 2473-93, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911694

RESUMO

Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1.


Assuntos
Endocitose/fisiologia , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Proteínas do Olho/análise , Proteínas do Olho/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Técnicas de Cultura de Órgãos , Células Fotorreceptoras/química , Retina/química , Retina/metabolismo , Sinapses/química , Sinapses/genética
17.
Immunity ; 28(3): 315-23, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18342006

RESUMO

CpG motifs within phosphorothioate (PS)-modified DNA drive Toll-like receptor 9 (TLR9) activation, but the rules governing recognition of natural phosphodiester (PD) DNA are less understood. Here, we showed that the sugar backbone determined DNA recognition by TLR9. Homopolymeric, base-free PD 2' deoxyribose acted as a basal TLR9 agonist as it bound to and activated TLR9. This effect was enhanced by DNA bases, even short of CpG motifs. In contrast, PS-modified 2' deoxyribose homopolymers acted as TLR9 and TLR7 antagonists. They displayed high affinity to both TLRs and did not activate on their own, but they competitively inhibited ligand-TLR interaction and activation. Although addition of random DNA bases to the PS 2' deoxyribose backbone did not alter these effects, CpG motifs transformed TLR9-inhibitory to robust TLR9-stimulatory activity. Our results identified the PD 2' deoxyribose backbone as an important determinant of TLR9 activation by natural DNA, restrict CpG-motif dependency of TLR9 activation to synthetic PS-modified ligands, and define PS-modified 2' deoxyribose as a prime effector of TLR9 and TLR7 inhibition.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/imunologia , Desoxirribose/imunologia , Receptor Toll-Like 9/imunologia , Animais , Células Dendríticas/imunologia , Endossomos/imunologia , Citometria de Fluxo , Humanos , Masculino , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligonucleotídeos/química , Oligonucleotídeos/imunologia , Reconhecimento Fisiológico de Modelo , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo
18.
J Neurosci ; 35(38): 13133-47, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400943

RESUMO

Night blindness can result from impaired photoreceptor function and a subset of cases have been linked to dysfunction of Cav1.4 calcium channels and in turn compromised synaptic transmission. Here, we show that active zone proteins RIM1/2 are important regulators of Cav1.4 channel function in mouse rod photoreceptors and thus synaptic activity. The conditional double knock-out (cdko) of RIM1 and RIM2 from rods starting a few weeks after birth did not change Cav1.4 protein expression at rod ribbon synapses nor was the morphology of the ribbon altered. Heterologous overexpression of RIM2 with Cav1.4 had no significant influence on current density when examined with BaCl2 as the charge carrier. Nonetheless, whole-cell voltage-clamp recordings from cdko rods revealed a profound reduction in Ca(2+) currents. Concomitantly, we observed a 4-fold reduction in spontaneous miniature release events from the cdko rod terminals and an almost complete absence of evoked responses when monitoring changes in membrane incorporation after strong step depolarizations. Under control conditions, 49 and 83 vesicles were released with 0.2 and 1 s depolarizations, respectively, which is close to the maximal number of vesicles estimated to be docked at the base of the ribbon active zone, but without RIM1/2, only a few vesicles were stimulated for release after a 1 s stimulation. In conclusion, our study shows that RIM1/2 potently enhance the influx of Ca(2+) into rod terminals through Cav1.4 channels, which is vitally important for the release of vesicles from the rod ribbon. Significance statement: Active zone scaffolding proteins are thought to bring multiple components involved in Ca(2+)-dependent exocytosis into functional interactions. We show that removal of scaffolding proteins RIM1/2 from rod photoreceptor ribbon synapses causes a dramatic loss of Ca(2+) influx through Cav1.4 channels and a correlated reduction in evoked release, yet the channels remain localized to synaptic ribbons in a normal fashion. Our findings strongly argue that RIM1/2 facilitate Ca(2+) entry and in turn Ca(2+) evoked release by modulating Cav1.4 channel openings; however, RIM1/2 are not needed for the retention of Cav1.4 at the synapse. In summary, a key function of RIM1/2 at rod ribbons is to enhance Cav1.4 channel activity, possibly through direct or indirect modulation of the channel.


Assuntos
Fenômenos Biofísicos/genética , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/genética , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Proteínas rab3 de Ligação ao GTP/metabolismo , Animais , Ácido Aspártico/farmacologia , Compostos de Bário/farmacologia , Fenômenos Biofísicos/efeitos dos fármacos , Canais de Cálcio/genética , Canais de Cálcio Tipo L , Cloretos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Retina/citologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Proteínas rab3 de Ligação ao GTP/genética
19.
J Neurosci ; 34(15): 5245-60, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719103

RESUMO

Ribbon synapses are tonically active synapses in the retina and inner ear with intense vesicle traffic. How this traffic is organized and regulated is still unknown. Synaptic ribbons, large presynaptic structures associated with numerous synaptic vesicles, appear to be essential for this process. The base of the synaptic ribbon is anchored at the active zone and is a hotspot of exocytosis. The synaptic ribbon complex is also important for vesicle replenishment. RIBEYE is a unique and major component of synaptic ribbons. It consists of a unique A-domain and an NAD(H)-binding, C-terminal B-domain. In the present study, we show that the Arf-GTPase activating protein-3 (ArfGAP3), a well characterized regulator of vesicle formation at the Golgi apparatus, is also a component of the synaptic ribbon complex in photoreceptor synapses of the mouse retina and interacts with RIBEYE as shown by multiple, independent approaches. ArfGAP3 binds to RIBEYE(B)-domain in an NAD(H)-dependent manner. The interaction is redox sensitive because NADH is more efficient than the oxidized NAD(+) in promoting ArfGAP3-RIBEYE interaction. RIBEYE competes with the GTP-binding protein Arf1 for binding to ArfGAP3. Thus, binding of RIBEYE(B) to ArfGAP3 could prevent inactivation of Arf1 by ArfGAP3 and provides the synaptic ribbon with the possibility to control Arf1 function. The interaction is relevant for endocytic vesicle trafficking because overexpression of ArfGAP3 in photoreceptors strongly inhibited endocytotic uptake of FM1-43.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endocitose , Proteínas Ativadoras de GTPase/metabolismo , NAD/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras/metabolismo , Sinapses/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Oxirredutases do Álcool , Animais , Células COS , Bovinos , Chlorocebus aethiops , Proteínas Correpressoras , Proteínas de Ligação a DNA/genética , Proteínas Ativadoras de GTPase/genética , Camundongos , Oxirredução , Fosfoproteínas/genética , Células Fotorreceptoras/fisiologia , Ligação Proteica , Sinapses/fisiologia
20.
J Neurophysiol ; 114(2): 1008-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063780

RESUMO

Gonadotropin-releasing hormone (GnRH) controls mammalian reproduction via the hypothalamic-pituitary-gonadal (hpg) axis, acting on gonadotrope cells in the pituitary gland that express the GnRH receptor (GnRHR). Cells expressing the GnRHR have also been identified in the brain. However, the mechanism by which GnRH acts on these potential target cells remains poorly understood due to the difficulty of visualizing and identifying living GnRHR neurons in the central nervous system. We have developed a mouse strain in which GnRHR neurons express a fluorescent marker, enabling the reliable identification of these cells independent of the hormonal status of the animal. In this study, we analyze the GnRHR neurons of the periventricular hypothalamic nucleus in acute brain slices prepared from adult female mice. Strikingly, we find that the action potential firing pattern of these neurons alternates in synchrony with the estrous cycle, with pronounced burst firing during the preovulatory period. We demonstrate that GnRH stimulation is sufficient to trigger the conversion from tonic to burst firing in GnRHR neurons. Furthermore, we show that this switch in the firing pattern is reversed by a potent GnRHR antagonist. These data suggest that endogenous GnRH acts on GnRHR neurons and triggers burst firing in these cells during late proestrus and estrus. Our data have important clinical implications in that they indicate a novel mode of action for GnRHR agonists and antagonists in neurons of the central nervous system that are not part of the classical hpg axis.


Assuntos
Potenciais de Ação/fisiologia , Ciclo Estral/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Capilares/ultraestrutura , Ciclo Estral/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antagonistas de Hormônios/farmacologia , Hipotálamo/irrigação sanguínea , Hipotálamo/efeitos dos fármacos , Hipotálamo/ultraestrutura , Imuno-Histoquímica , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA