Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nature ; 536(7615): 165-70, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27479321

RESUMO

Adaptation by natural selection depends on the rates, effects and interactions of many mutations, making it difficult to determine what proportion of mutations in an evolving lineage are beneficial. Here we analysed 264 complete genomes from 12 Escherichia coli populations to characterize their dynamics over 50,000 generations. The populations that retained the ancestral mutation rate support a model in which most fixed mutations are beneficial, the fraction of beneficial mutations declines as fitness rises, and neutral mutations accumulate at a constant rate. We also compared these populations to mutation-accumulation lines evolved under a bottlenecking regime that minimizes selection. Nonsynonymous mutations, intergenic mutations, insertions and deletions are overrepresented in the long-term populations, further supporting the inference that most mutations that reached high frequency were favoured by selection. These results illuminate the shifting balance of forces that govern genome evolution in populations adapting to a new environment.


Assuntos
Escherichia coli/genética , Escherichia coli/fisiologia , Evolução Molecular , Genoma Bacteriano/genética , Taxa de Mutação , Proteínas de Escherichia coli/genética , Genes Bacterianos/genética , Loci Gênicos/genética , Modelos Genéticos , Filogenia , Reprodução Assexuada/genética , Seleção Genética/genética , Fatores de Tempo
2.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498912

RESUMO

Extracellular vesicles (EVs) are critical elements of cell-cell communication. Here, we characterized the outer membrane vesicles (OMVs) released by specific clones of Escherichia coli isolated from the Long-Term Evolution Experiment after 50,000 generations (50K) of adaptation to glucose minimal medium. Compared with their ancestor, the evolved clones produce small OMVs but also larger ones which display variable amounts of both OmpA and LPS. Tracking ancestral, fluorescently labelled OMVs revealed that they fuse with both ancestral- and 50K-evolved cells, albeit in different proportions. We quantified that less than 2% of the cells from one 50K-evolved clone acquired the fluorescence delivered by OMVs from the ancestral strain but that one cell concomitantly fuses with several OMVs. Globally, our results showed that OMV production in E. coli is a phenotype that varies along bacterial evolution and question the contribution of OMVs-mediated interactions in bacterial adaptation.


Assuntos
Escherichia coli , Vesículas Extracelulares , Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/genética
3.
Nucleic Acids Res ; 47(11): 5648-5657, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31216038

RESUMO

DNA supercoiling acts as a global transcriptional regulator in bacteria, that plays an important role in adapting their expression programme to environmental changes, but for which no quantitative or even qualitative regulatory model is available. Here, we focus on spatial supercoiling heterogeneities caused by the transcription process itself, which strongly contribute to this regulation mode. We propose a new mechanistic modeling of the transcription-supercoiling dynamical coupling along a genome, which allows simulating and quantitatively reproducing in vitro and in vivo transcription assays, and highlights the role of genes' local orientation in their supercoiling sensitivity. Consistently with predictions, we show that chromosomal relaxation artificially induced by gyrase inhibitors selectively activates convergent genes in several enterobacteria, while conversely, an increase in DNA supercoiling naturally selected in a long-term evolution experiment with Escherichia coli favours divergent genes. Simulations show that these global expression responses to changes in DNA supercoiling result from fundamental mechanical constraints imposed by transcription, independently from more specific regulation of each promoter. These constraints underpin a significant and predictable contribution to the complex rules by which bacteria use DNA supercoiling as a global but fine-tuned transcriptional regulator.


Assuntos
Cromossomos Bacterianos/genética , DNA Bacteriano/metabolismo , DNA Super-Helicoidal , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Simulação por Computador , Escherichia coli/genética , Perfilação da Expressão Gênica , Genes Bacterianos , Modelos Biológicos , Regiões Promotoras Genéticas , Processos Estocásticos , Transcriptoma
4.
Mol Biol Evol ; 36(6): 1121-1133, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30825312

RESUMO

Transcription regulatory networks (TRNs) are of central importance for both short-term phenotypic adaptation in response to environmental fluctuations and long-term evolutionary adaptation, with global regulatory genes often being targets of natural selection in laboratory experiments. Here, we combined evolution experiments, whole-genome resequencing, and molecular genetics to investigate the driving forces, genetic constraints, and molecular mechanisms that dictate how bacteria can cope with a drastic perturbation of their TRNs. The crp gene, encoding a major global regulator in Escherichia coli, was deleted in four different genetic backgrounds, all derived from the Long-Term Evolution Experiment (LTEE) but with different TRN architectures. We confirmed that crp deletion had a more deleterious effect on growth rate in the LTEE-adapted genotypes; and we showed that the ptsG gene, which encodes the major glucose-PTS transporter, gained CRP (cyclic AMP receptor protein) dependence over time in the LTEE. We then further evolved the four crp-deleted genotypes in glucose minimal medium, and we found that they all quickly recovered from their growth defects by increasing glucose uptake. We showed that this recovery was specific to the selective environment and consistently relied on mutations in the cis-regulatory region of ptsG, regardless of the initial genotype. These mutations affected the interplay of transcription factors acting at the promoters, changed the intrinsic properties of the existing promoters, or produced new transcription initiation sites. Therefore, the plasticity of even a single promoter region can compensate by three different mechanisms for the loss of a key regulatory hub in the E. coli TRN.


Assuntos
Evolução Biológica , Proteína Receptora de AMP Cíclico/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Escherichia coli , Deleção de Genes , Mutação , Fenótipo
5.
Proc Natl Acad Sci U S A ; 114(43): E9026-E9035, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073099

RESUMO

Understanding the extreme variation among bacterial genomes remains an unsolved challenge in evolutionary biology, despite long-standing debate about the relative importance of natural selection, mutation, and random drift. A potentially important confounding factor is the variation in mutation rates between lineages and over evolutionary history, which has been documented in several species. Mutation accumulation experiments have shown that hypermutability can erode genomes over short timescales. These results, however, were obtained under conditions of extremely weak selection, casting doubt on their general relevance. Here, we circumvent this limitation by analyzing genomes from mutator populations that arose during a long-term experiment with Escherichia coli, in which populations have been adaptively evolving for >50,000 generations. We develop an analytical framework to quantify the relative contributions of mutation and selection in shaping genomic characteristics, and we validate it using genomes evolved under regimes of high mutation rates with weak selection (mutation accumulation experiments) and low mutation rates with strong selection (natural isolates). Our results show that, despite sustained adaptive evolution in the long-term experiment, the signature of selection is much weaker than that of mutational biases in mutator genomes. This finding suggests that relatively brief periods of hypermutability can play an outsized role in shaping extant bacterial genomes. Overall, these results highlight the importance of genomic draft, in which strong linkage limits the ability of selection to purge deleterious mutations. These insights are also relevant to other biological systems evolving under strong linkage and high mutation rates, including viruses and cancer cells.


Assuntos
Escherichia coli/genética , Evolução Molecular , Genoma Bacteriano , Seleção Genética , Escherichia coli/fisiologia , Mutação , Taxa de Mutação , Filogenia
6.
PLoS Comput Biol ; 13(3): e1005459, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28358919

RESUMO

Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character displacement, at the level of the metabolic network but also of the genome structure. This difference of genome structure between both ecotypes impacts the stability of the cross-feeding interaction, when the population is propagated in chemostat conditions. This study shows the crucial role played by seasonality in temporal niche partitioning and in promoting cross-feeding subgroups into stable ecotypes, a premise to sympatric speciation.


Assuntos
Adaptação Fisiológica , Fenômenos Fisiológicos Bacterianos , Técnicas de Cultura Celular por Lotes/métodos , Evolução Biológica , Biologia Computacional , Simulação por Computador , Ecótipo , Escherichia coli/genética , Escherichia coli/fisiologia , Microbiota , Modelos Biológicos , Estações do Ano , Simpatria
7.
J Mol Evol ; 85(1-2): 26-36, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28744786

RESUMO

Adaptive diversification is an essential evolutionary process, one that produces phenotypic innovations including the colonization of available ecological niches. Bacteria can diverge in sympatry when ecological opportunities allow, but the underlying genetic mechanisms are often unknown. Perhaps, the longest-lasting adaptive diversification seen in the laboratory occurred during the long-term evolution experiment, in which 12 populations of Escherichia coli have been evolving independently for more than 65,000 generations from a common ancestor. In one population, two lineages, S and L, emerged at ~6500 generations and have dynamically coexisted ever since by negative frequency-dependent interactions mediated, in part, by acetate secretion by L. Mutations in spoT, arcA, and gntR promoted the emergence of the S lineage, although they reproduced only partially its phenotypic traits. Here, we characterize the evolved mechanism of acetate consumption by the S lineage that enabled invasion and coexistence with the L lineage. We identified an additional mutation in acs that, together with the arcA mutation, drove an early restructuring of the transcriptional control of central metabolism in S, leading to improved acetate consumption. Pervasive epistatic interactions within the S genome contributed to the exploitation of this new ecological opportunity. The emergence and maintenance of this long-term polymorphism is a complex multi-step process.


Assuntos
Adaptação Biológica , Evolução Biológica , Escherichia coli/genética , Mutação , Ácido Acético/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fenótipo , Polimorfismo Genético , Pirofosfatases/genética , Proteínas Repressoras/genética
8.
BMC Evol Biol ; 16: 86, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27108090

RESUMO

BACKGROUND: The impact of historical contingency, i.e. the past evolutionary history of a population, on further adaptation is mostly unknown at both the phenotypic and genomic levels. We addressed this question using a two-step evolution experiment. First, replicate populations of Escherichia coli were propagated in four different environmental conditions for 1000 generations. Then, all replicate populations were transferred and propagated for further 1000 generations to a single new environment. RESULTS: Using this two-step experimental evolution strategy, we investigated, at both the phenotypic and genomic levels, whether and how adaptation in the initial historical environments impacted evolutionary trajectories in a new environment. We showed that both the growth rate and fitness of the evolved populations obtained after the second step of evolution were contingent upon past evolutionary history. In contrast however, the genes that were modified during the second step of evolution were independent from the previous history of the populations. CONCLUSIONS: Our work suggests that historical contingency affects phenotypic adaptation to a new environment. This was however not reflected at the genomic level implying complex relationships between environmental factors and the genotype-to-phenotype map.


Assuntos
Escherichia coli/genética , Adaptação Fisiológica , Meio Ambiente , Evolução Molecular , Interação Gene-Ambiente , Genoma Bacteriano , Fenótipo
9.
BMC Evol Biol ; 16(1): 163, 2016 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-27544664

RESUMO

BACKGROUND: Predicting adaptive trajectories is a major goal of evolutionary biology and useful for practical applications. Systems biology has enabled the development of genome-scale metabolic models. However, analysing these models via flux balance analysis (FBA) cannot predict many evolutionary outcomes including adaptive diversification, whereby an ancestral lineage diverges to fill multiple niches. Here we combine in silico evolution with FBA and apply this modelling framework, evoFBA, to a long-term evolution experiment with Escherichia coli. RESULTS: Simulations predicted the adaptive diversification that occurred in one experimental population and generated hypotheses about the mechanisms that promoted coexistence of the diverged lineages. We experimentally tested and, on balance, verified these mechanisms, showing that diversification involved niche construction and character displacement through differential nutrient uptake and altered metabolic regulation. CONCLUSION: The evoFBA framework represents a promising new way to model biochemical evolution, one that can generate testable predictions about evolutionary and ecosystem-level outcomes.


Assuntos
Evolução Biológica , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação por Computador , Ecossistema , Escherichia coli/crescimento & desenvolvimento , Modelos Biológicos
10.
Proc Natl Acad Sci U S A ; 110(1): 222-7, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248287

RESUMO

Mutations are the ultimate source of heritable variation for evolution. Understanding how mutation rates themselves evolve is thus essential for quantitatively understanding many evolutionary processes. According to theory, mutation rates should be minimized for well-adapted populations living in stable environments, whereas hypermutators may evolve if conditions change. However, the long-term fate of hypermutators is unknown. Using a phylogenomic approach, we found that an adapting Escherichia coli population that first evolved a mutT hypermutator phenotype was later invaded by two independent lineages with mutY mutations that reduced genome-wide mutation rates. Applying neutral theory to synonymous substitutions, we dated the emergence of these mutations and inferred that the mutT mutation increased the point-mutation rate by ∼150-fold, whereas the mutY mutations reduced the rate by ∼40-60%, with a corresponding decrease in the genetic load. Thus, the long-term fate of the hypermutators was governed by the selective advantage arising from a reduced mutation rate as the potential for further adaptation declined.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Escherichia coli/genética , Carga Genética , Taxa de Mutação , DNA Glicosilases/genética , Proteínas de Escherichia coli/genética , Funções Verossimilhança , Modelos Genéticos , Filogenia , Dinâmica Populacional , Pirofosfatases/genética
11.
J Antimicrob Chemother ; 70(6): 1727-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25691323

RESUMO

OBJECTIVES: We report the synthesis, antibacterial activity and toxicity of 24 bis-indolic derivatives obtained during the development of new ways of synthesis of marine bis-indole alkaloids from the spongotine, topsentin and hamacanthin classes. METHODS: Innovative ways of synthesis and further structural optimizations led to bis-indoles presenting either the 1-(1H-indol-3'-yl)-1,2-diaminoethane unit or the 1-(1H-indol-3-yl)ethanamine unit. MIC determination was performed for reference and clinical strains of Staphylococcus aureus and CoNS species. MBC, time-kill kinetics, solubility, hydrophobicity index, plasma protein-binding and cytotoxicity assays were performed for lead compounds. Inhibition of the S. aureus NorA efflux pump was also tested for bis-indoles with no antistaphylococcal activity. RESULTS: Lead compounds were active against both S. aureus and CoNS species, with MICs between 1 and 4 mg/L. Importantly, the same MICs were found for MRSA and vancomycin-intermediate S. aureus strains. Early concentration-dependent bactericidal activity was observed for lead derivatives. Compounds with no intrinsic antibacterial activity could inhibit the S. aureus NorA efflux pump, which is involved in resistance to fluoroquinolones. At 0.5 mg/L, the most effective compound led to an 8-fold reduction of the ciprofloxacin MIC for the SA-1199B S. aureus strain, which overexpresses NorA. However, the bis-indole compounds displayed a high hydrophobicity index and high plasma protein binding, which significantly reduced antibacterial activity. CONCLUSIONS: We have synthesized and characterized novel bis-indole derivatives as promising candidates for the development of new antistaphylococcal treatments, with preserved activity against MDR S. aureus strains.


Assuntos
Alcaloides/síntese química , Alcaloides/farmacologia , Antibacterianos/síntese química , Antibacterianos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Staphylococcus/efeitos dos fármacos , Alcaloides/química , Antibacterianos/química , Humanos , Imidazóis/química , Imidazolinas/química , Alcaloides Indólicos/química , Indóis/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Pirazinas/química , Fatores de Tempo
12.
Nature ; 461(7268): 1243-7, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19838166

RESUMO

The relationship between rates of genomic evolution and organismal adaptation remains uncertain, despite considerable interest. The feasibility of obtaining genome sequences from experimentally evolving populations offers the opportunity to investigate this relationship with new precision. Here we sequence genomes sampled through 40,000 generations from a laboratory population of Escherichia coli. Although adaptation decelerated sharply, genomic evolution was nearly constant for 20,000 generations. Such clock-like regularity is usually viewed as the signature of neutral evolution, but several lines of evidence indicate that almost all of these mutations were beneficial. This same population later evolved an elevated mutation rate and accumulated hundreds of additional mutations dominated by a neutral signature. Thus, the coupling between genomic and adaptive evolution is complex and can be counterintuitive even in a constant environment. In particular, beneficial substitutions were surprisingly uniform over time, whereas neutral substitutions were highly variable.


Assuntos
Adaptação Fisiológica , Escherichia coli/genética , Evolução Molecular , Genoma Bacteriano/genética , Análise Mutacional de DNA , Escherichia coli/crescimento & desenvolvimento , Aptidão Genética , Modelos Genéticos , Mutação , Seleção Genética , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 109(24): 9487-92, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645336

RESUMO

Closely related organisms usually occupy similar ecological niches, leading to intense competition and even extinction. Such competition also can promote rapid phenotypic evolution and ecological divergence. This process may end with the stable occupation of distinct niches or, alternatively, may entail repeated bouts of evolution. Here we examine two Escherichia coli lineages, called L and S, that coexisted for more than 30,000 generations after diverging from a common ancestor. Both lineages underwent sustained phenotypic evolution based on global transcription and resource utilization profiles, with L seeming to encroach over time on the catabolic profile of S. Reciprocal invasion experiments with L and S clones from the same or different generations revealed evolutionary changes in their interaction, including an asymmetry that confirmed the encroachment by L on the niche of the S lineage. In general, L and S clones from the same generation showed negative frequency-dependent effects, consistent with stable coexistence. However, L clones could invade S clones from both earlier and later generations, whereas S clones could invade only L clones from earlier generations. In this system, the long-term coexistence of competing lineages evidently depended on successive rounds of evolution, rather than on initial divergence followed by a static equilibrium.


Assuntos
Ecologia , Escherichia coli/genética , Evolução Molecular , Análise por Conglomerados , Escherichia coli/crescimento & desenvolvimento , Perfilação da Expressão Gênica
14.
J Antimicrob Chemother ; 69(1): 101-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23963236

RESUMO

OBJECTIVES: Francisella tularensis, a CDC class A potential bioterrorism agent, is a Gram-negative bacterium responsible for tularaemia. Understanding the mechanisms of resistance to antibiotics used as first-line treatment is of major security relevance. METHODS: We propagated the three parental reference strains Francisella tularensis subsp. holarctica live vaccine strain, Francisella novicida and Francisella philomiragia with increasing concentrations of ciprofloxacin, a fluoroquinolone used as curative and prophylactic treatment for tularaemia. This evolution procedure provided us with high-level ciprofloxacin-resistant mutants and all evolutionary intermediates towards high-level resistance. We determined the resistance levels to other fluoroquinolones (levofloxacin and moxifloxacin) and other antibiotic families (aminoglycosides, tetracyclines and macrolides) and characterized the genetic changes in the fluoroquinolone target genes encoding DNA gyrase and topoisomerase IV. RESULTS: All high-level resistant mutants shared cross-resistance to the tested fluoroquinolones, while some also revealed striking levels of cross-resistance to other clinically relevant antibiotic classes. High-level resistant mutants carried one to three mutations, including some not previously reported. We mapped all mutations onto known topoisomerase three-dimensional structures. Along the pathways towards high-level resistance, we identified complex evolutionary trajectories including polymorphic states and additional resistance mechanisms likely to be associated with efflux processes. CONCLUSIONS: Our data demonstrated the efficiency and speed of in vitro production of mutants highly resistant to fluoroquinolones in Francisella species. They emphasize the urgent need to identify all antibiotic resistance mechanisms in these species, develop molecular tools for their detection and design new therapeutic alternatives for tularaemia.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Francisella/efeitos dos fármacos , DNA Girase/genética , Análise Mutacional de DNA , DNA Topoisomerase IV/genética , Francisella/enzimologia , Francisella/genética , Francisella/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Seleção Genética , Inoculações Seriadas
15.
BMC Genomics ; 14: 441, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23822838

RESUMO

BACKGROUND: DNA duplications constitute important precursors for genome variation. Here we analyzed an unequal duplication harboring a beneficial mutation that may provide alternative evolutionary outcomes. RESULTS: We characterized this evolutionary event during experimental evolution for only 100 generations of an Escherichia coli strain under glucose limitation within chemostats. By combining Insertion Sequence based Restriction Length Polymorphism experiments, pulsed field gel electrophoresis and two independent genome re-sequencing experiments, we identified an evolved lineage carrying a 180 kb duplication of the 46' region of the E. coli chromosome. This evolved duplication revealed a heterozygous state, with one copy harboring a 2668 bp deletion that included part of the ogrK gene and both the yegR and yegS genes. By genetically manipulating ancestral and evolved strains, we showed that the single yegS inactivation was sufficient to confer a frequency dependent fitness increase under the chemostat selective conditions in both the ancestor and evolved genetic contexts, implying that the duplication itself was not a direct fitness contributor. Nonetheless, the heterozygous duplicated state was relatively stable in the conditions prevailing during evolution in chemostats, in striking contrast to non selective conditions in which the duplication resolved at high frequency into either its ancestral or deleted copy. CONCLUSIONS: Our results suggest that the duplication state may constitute a second order selection process providing higher evolutionary potential. Moreover, its heterozygous nature may provide differential evolutionary opportunities in alternating environments. Our results also highlighted how careful analyses of whole genome data are needed to identify such complex rearrangements.


Assuntos
Adaptação Fisiológica/genética , Duplicação Cromossômica , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/fisiologia , Mutação/genética , Deleção Cromossômica , Células Clonais , Rearranjo Gênico/genética , Heterozigoto , Fenótipo , Polimorfismo de Fragmento de Restrição , Análise de Sequência
16.
Emerg Infect Dis ; 19(10): 1605-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24050302

RESUMO

Plasmodium vivax is a major cause of illness in areas with low transmission of malaria in Latin America, Asia, and the Horn of Africa. However, pregnancy-associated malaria remains poorly characterized in such areas. Using a hospital-based survey of women giving birth and an antenatal survey, we assessed the prevalence rates of Plasmodium spp. infections in pregnant women in Bolivia, and evaluated the consequences of malaria during pregnancy on the health of mothers and newborns. P. vivax infection was detected in 7.9% of pregnant women attending antenatal visits, and placental infection occurred in 2.8% of deliveries; these rates did not vary with parity. Forty-two percent of all P. vivax malaria episodes were symptomatic. P. vivax-infected pregnant women were frequently anemic (6.5%) and delivered babies of reduced birthweight. P. vivax infections during pregnancy are clearly associated with serious adverse outcomes and should be considered in prevention strategies of pregnancy-associated malaria.


Assuntos
Malária Vivax/epidemiologia , Plasmodium vivax , Complicações Parasitárias na Gravidez/epidemiologia , Adolescente , Adulto , Anemia/epidemiologia , Anemia/parasitologia , Bolívia/epidemiologia , Monitoramento Epidemiológico , Feminino , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Malária Vivax/parasitologia , Pessoa de Meia-Idade , Placenta/parasitologia , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Prevalência , Fatores de Risco , Adulto Jovem
17.
Mol Ecol ; 22(12): 3292-3303, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24624420

RESUMO

We investigated the relationship between genomic and phenotypic evolution among replicate populations of Escherichia coli evolved for 1000 generations in four different environments. By resequencing evolved genomes, we identified parallel changes in genes encoding transcription regulators within and between environments. Depending on both the environment and the altered gene, genetic parallelism at the gene level involved mutations that affected identical codons, protein domains or were widely distributed across the gene. Evolved clones were characterized by parallel phenotypic changes in their respective evolution environments but also in the three alternative environments. Phenotypic parallelism was high for clones that evolved in the same environment, even in the absence of genetic parallelism. By contrast, clones that evolved in different environments revealed a higher parallelism in correlated responses when they shared mutated genes. Altogether, this work shows that after an environmental change or the colonization of a new habitat, similar ecological performance might be expected from individuals that share mutated genes or that experienced similar past selective pressures.


Assuntos
Meio Ambiente , Escherichia coli/genética , Evolução Molecular , Genes Bacterianos , DNA Bacteriano/genética , Escherichia coli/crescimento & desenvolvimento , Aptidão Genética , Mutação , Fenótipo , Análise de Sequência de DNA
18.
PLoS Genet ; 5(1): e1000344, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19165319

RESUMO

The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Elementos de DNA Transponíveis , Evolução Molecular , Genética , Genoma , Genômica , Funções Verossimilhança , Modelos Biológicos , Modelos Genéticos , Filogenia , Polimorfismo Genético , Recombinação Genética
19.
Antibiotics (Basel) ; 11(4)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35453204

RESUMO

Failure of antibiotic therapies causes > 700,000 deaths yearly and involves both bacterial resistance and persistence. Persistence results in the relapse of infections by producing a tiny fraction of pathogen survivors that stay dormant during antibiotic exposure. From an evolutionary perspective, persistence is either a 'bet-hedging strategy' that helps to cope with stochastically changing environments or an unavoidable minimal rate of 'cellular errors' that lock the cells in a low activity state. Here, we analyzed the evolution of persistence over 50,000 bacterial generations in a stable environment by improving a published method that estimates the number of persister cells based on the growth of the reviving population. Our results challenged our understanding of the factors underlying persistence evolution. In one case, we observed a substantial decrease in persistence proportion, suggesting that the naturally observed persistence level is not an unavoidable minimal rate of 'cellular errors'. However, although there was no obvious environmental stochasticity, in 11 of the 12 investigated populations, the persistence level was maintained during 50,000 bacterial generations.

20.
J Bacteriol ; 193(5): 1114-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21169481

RESUMO

Natural transformation by competence is a major mechanism of horizontal gene transfer in bacteria. Competence is defined as the genetically programmed physiological state that enables bacteria to actively take up DNA from the environment. The conditions that signal competence development are multiple and elusive, complicating the understanding of its evolutionary significance. We used expression of the competence gene comEA as a reporter of competence development and screened several hundred molecules for their ability to induce competence in the freshwater living pathogen Legionella pneumophila. We found that comEA expression is induced by chronic exposure to genotoxic molecules such as mitomycin C and antibiotics of the fluoroquinolone family. These results indicated that, in L. pneumophila, competence may be a response to genotoxic stress. Sunlight-emitted UV light represents a major source of genotoxic stress in the environment and we found that exposure to UV radiation effectively induces competence development. For the first time, we show that genetic exchanges by natural transformation occur within an UV-stressed population. Genotoxic stress induces the RecA-dependent SOS response in many bacteria. However, genetic and phenotypic evidence suggest that L. pneumophila lacks a prototypic SOS response and competence development in response to genotoxic stress is RecA independent. Our results strengthen the hypothesis that competence may have evolved as a DNA damage response in SOS-deficient bacteria. This parasexual response to DNA damage may have enabled L. pneumophila to acquire and propagate foreign genes, contributing to the emergence of this human pathogen.


Assuntos
Antibacterianos/farmacologia , Legionella pneumophila/efeitos dos fármacos , Legionella pneumophila/efeitos da radiação , Raios Ultravioleta , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica/fisiologia , Transferência Genética Horizontal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA