Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 162(6): 1353-64, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26343580

RESUMO

Abiotic stress, such as salinity, drought, and cold, causes detrimental yield losses for all major plant crop species. Understanding mechanisms that improve plants' ability to produce biomass, which largely is constituted by the plant cell wall, is therefore of upmost importance for agricultural activities. Cellulose is a principal component of the cell wall and is synthesized by microtubule-guided cellulose synthase enzymes at the plasma membrane. Here, we identified two components of the cellulose synthase complex, which we call companion of cellulose synthase (CC) proteins. The cytoplasmic tails of these membrane proteins bind to microtubules and promote microtubule dynamics. This activity supports microtubule organization, cellulose synthase localization at the plasma membrane, and renders seedlings less sensitive to stress. Our findings offer a mechanistic model for how two molecular components, the CC proteins, sustain microtubule organization and cellulose synthase localization and thus aid plant biomass production during salt stress. VIDEO ABSTRACT.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Celulose/biossíntese , Glucosiltransferases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biomassa , Parede Celular/metabolismo , Glucosiltransferases/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Salinidade , Estresse Fisiológico
2.
Proc Natl Acad Sci U S A ; 119(50): e2203900119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36475944

RESUMO

Plant cell walls are versatile materials that can adopt a wide range of mechanical properties through controlled deposition of cellulose fibrils. Wall integrity requires a sufficiently homogeneous fibril distribution to cope effectively with wall stresses. Additionally, specific conditions, such as the negative pressure in water transporting xylem vessels, may require more complex wall patterns, e.g., bands in protoxylem. The orientation and patterning of cellulose fibrils are guided by dynamic cortical microtubules. New microtubules are predominantly nucleated from parent microtubules causing positive feedback on local microtubule density with the potential to yield highly inhomogeneous patterns. Inhomogeneity indeed appears in all current cortical array simulations that include microtubule-based nucleation, suggesting that plant cells must possess an as-yet unknown balancing mechanism to prevent it. Here, in a combined simulation and experimental approach, we show that a limited local recruitment of nucleation complexes to microtubules can counter the positive feedback, whereas local tubulin depletion cannot. We observe that nucleation complexes preferentially appear at the plasma membrane near microtubules. By incorporating our experimental findings in stochastic simulations, we find that the spatial behavior of nucleation complexes delicately balances the positive feedback, such that differences in local microtubule dynamics-as in developing protoxylem-can quickly turn a homogeneous array into a banded one. Our results provide insight into how the plant cytoskeleton has evolved to meet diverse mechanical requirements and greatly increase the predictive power of computational cell biology studies.


Assuntos
Biologia Computacional , Microtúbulos
3.
Small ; 19(32): e2300357, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078837

RESUMO

High energy density micro-supercapacitors (MSCs) are in high demand for miniaturized electronics and microsystems. Research efforts today focus on materials development, applied in the planar interdigitated, symmetric electrode architecture. A novel "cup & core" device architecture that allows for printing of asymmetric devices without the need of accurately positioning the second finger electrode here have been introduced. The bottom electrode is either produced by laser ablation of a blade-coated graphene layer or directly screen-printed with graphene inks to create grids with high aspect ratio walls forming an array of "micro-cups". A quasi-solid-state ionic liquid electrolyte is spray-deposited on the walls; the top electrode material -MXene inks- is then spray-coated to fill the cup structure. The architecture combines the advantages of interdigitated electrodes for facilitated ion-diffusion, which is critical for 2D-material-based energy storage systems by providing vertical interfaces with the layer-by-layer processing of the sandwich geometry. Compared to flat reference devices, volumetric capacitance of printed "micro-cups" MSC increased considerably, while the time constant decreased (by 58%). Importantly, the high energy density (3.99 µWh cm-2 ) of the "micro-cups" MSC is also superior to other reported MXene and graphene-based MSCs.

4.
Proc Natl Acad Sci U S A ; 115(27): E6366-E6374, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29871949

RESUMO

In plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs. Using live-cell imaging, we analyzed the principles underlying this remodeling. At the onset of secondary wall synthesis, the primary wall CESAs ceased to be delivered to the plasma membrane and were gradually removed from both the plasma membrane and the Golgi. For a brief transition period, both primary wall- and secondary wall-specific CESAs coexisted in banded domains of the plasma membrane where secondary wall synthesis is concentrated. During this transition, primary and secondary wall CESAs displayed discrete dynamic behaviors and sensitivities to the inhibitor isoxaben. As secondary wall-specific CESAs were delivered and inserted into the plasma membrane, the primary wall CESAs became concentrated in prevacuolar compartments and lytic vacuoles. This adjustment in localization between the two CESAs was accompanied by concurrent decreased primary wall CESA and increased secondary wall CESA protein abundance. Our data reveal distinct and dynamic subcellular trafficking patterns that underpin the remodeling of the cellulose biosynthetic machinery, resulting in the removal and degradation of the primary wall CESA complex with concurrent production and recycling of the secondary wall CESAs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Transdiferenciação Celular/fisiologia , Glucosiltransferases/metabolismo , Xilema/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glucosiltransferases/genética , Xilema/genética
5.
Plant Cell ; 29(10): 2433-2449, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28947492

RESUMO

The evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown. Cellulose is the major secondary wall constituent and is synthesized by plasma membrane-localized cellulose synthases (CesAs) whose catalytic activity propels them through the membrane. We show that the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1)/POM2 is necessary to align the secondary wall CesAs and MTs during the initial phase of xylem vessel development in Arabidopsis thaliana and rice (Oryza sativa). Surprisingly, these MT-driven patterns successively become imprinted and sufficient to sustain the continued progression of wall thickening in the absence of MTs and CSI1/POM2 function. Hence, two complementary principles underpin wall patterning during xylem vessel development.


Assuntos
Parede Celular/metabolismo , Xilema/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Parede Celular/genética , Celulose/metabolismo , Glucosiltransferases/metabolismo , Microtúbulos/metabolismo , Xilema/genética
6.
Proc Natl Acad Sci U S A ; 114(13): 3533-3538, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289192

RESUMO

The deposition of cellulose is a defining aspect of plant growth and development, but regulation of this process is poorly understood. Here, we demonstrate that the protein kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a key negative regulator of brassinosteroid (BR) signaling, can phosphorylate Arabidopsis cellulose synthase A1 (CESA1), a subunit of the primary cell wall cellulose synthase complex, and thereby negatively regulate cellulose biosynthesis. Accordingly, point mutations of the BIN2-mediated CESA1 phosphorylation site abolished BIN2-dependent regulation of cellulose synthase activity. Hence, we have uncovered a mechanism for how BR signaling can modulate cellulose synthesis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulose/biossíntese , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Glucosiltransferases/química , Glucosiltransferases/genética , Dados de Sequência Molecular , Fosforilação , Mutação Puntual , Proteínas Quinases/genética , Alinhamento de Sequência
7.
Plant Biotechnol J ; 16(5): 976-988, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28944540

RESUMO

Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6-like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild-type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6-like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Celulose/metabolismo , Glucosiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Biomassa , Parede Celular/enzimologia , Expressão Gênica , Glucosiltransferases/genética , Plantas Geneticamente Modificadas , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento
8.
Biophys J ; 108(9): 2249-57, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954882

RESUMO

Obstacles on the surface of microtubules can lead to defective cargo transport, proposed to play a role in neurological diseases such as Alzheimer's. However, little is known about how motor proteins, which follow individual microtubule protofilaments (such as kinesin-1), deal with obstacles on the molecular level. Here, we used rigor-binding mutants of kinesin-1 as roadblocks to permanently obstruct individual microtubule binding sites and studied the movement of individual kinesin-1 motors by single-molecule fluorescence and dark-field scattering microscopy in vitro. In the presence of roadblocks, kinesin-1 often stopped for ∼ 0.4 s before either detaching or continuing to move, whereby the latter circumvention events occurred in >30% after a stopping event. Consequently, and in agreement with numerical simulations, the mean velocity, mean run length, and mean dwell time of the kinesin-1 motors decreased upon increasing the roadblock density. Tracking individual kinesin-1 motors labeled by 40 nm gold particles with 6 nm spatial and 1 ms temporal precision revealed that ∼ 70% of the circumvention events were associated with significant transverse shifts perpendicular to the axis of the microtubule. These side-shifts, which occurred with equal likelihood to the left and right, were accompanied by a range of longitudinal shifts suggesting that roadblock circumvention involves the unbinding and rebinding of the motors. Thus, processive motors, which commonly follow individual protofilaments in the absence of obstacles, appear to possess intrinsic circumvention mechanisms. These mechanisms were potentially optimized by evolution for the motor's specific intracellular tasks and environments.


Assuntos
Cinesinas/química , Movimento (Física) , Animais , Cinesinas/genética , Mutação , Ratos
9.
Appl Environ Microbiol ; 81(9): 3006-15, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710363

RESUMO

Inorganic polyphosphate (polyP) is a linear polymer composed of several molecules of orthophosphate (Pi) linked by energy-rich phosphoanhydride bonds. In Pseudomonas aeruginosa, Pi is taken up by the ABC transporter Pst, encoded by an operon consisting of five genes. The first four genes encode proteins involved in the transport of Pi and the last gene of the operon, phoU, codes for a protein which exact function is unknown. We show here that the inactivation of phoU in P. aeruginosa enhanced Pi removal from the medium and polyP accumulation. The phoU mutant also accumulated high levels of the alarmone guanosine tetraphosphate (ppGpp), which in turn increased the buildup of polyP. In addition, phoU inactivation had several pleiotropic effects, such as reduced growth rate and yield and increased sensitivity to antibiotics and stresses. However, biofilm formation was not affected by the phoU mutation.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas de Inativação de Genes , Guanosina Tetrafosfato/metabolismo , Polifosfatos/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Óperon , Pseudomonas aeruginosa/genética
10.
Biophys J ; 107(2): 365-372, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028878

RESUMO

Long-range directional transport in cells is facilitated by microtubule-based motor proteins. One example is transport in a nerve cell, where small groups of motor proteins, such as kinesins and cytoplasmic dynein, work together to ensure the supply and clearance of cellular material along the axon. Defects in axonal transport have been linked to Alzheimer's and other neurodegenerative diseases. However, it is not known in detail how multimotor-based cargo transport is impaired if a fraction of the motors are defective. To mimic impaired multimotor transport in vitro, we performed gliding motility assays with varying fractions of active kinesin-1 motors and inactive kinesin-1 motor mutants. We found that impaired transport manifests in multiple motility regimes: 1), a fast-motility regime characterized by gliding at velocities close to the single-molecule velocity of the active motors; 2), a slow-motility regime characterized by gliding at close-to zero velocity or full stopping; and 3), a regime in which fast and slow motilities coexist. Notably, the transition from the fast to the slow regime occurred sharply at a threshold fraction of active motors. Based on single-motor parameters, we developed a stochastic model and a mean-field theoretical description that explain our experimental findings. Our results demonstrate that impaired multimotor transport mostly occurs in an either/or fashion: depending on the ratio of active to inactive motors, transport is either performed at close to full speed or is out of action.


Assuntos
Cinesinas/química , Modelos Biológicos , Transporte Axonal , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Movimento (Física) , Mutação , Processos Estocásticos
11.
Opt Express ; 21(3): 3523-39, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481810

RESUMO

Illumination based on objective-type total internal reflection (TIR) is nowadays widely used in high-performance fluorescence microscopy. However, the desirable application of such setups for dark-field imaging of scattering entities is cumbersome due to the spatial overlap of illumination and detection light, which cannot be separated spectrally. Here, we report a novel TIR approach based on a parabolically shaped quartz prism that allows for the detection of single-molecule fluorescence as well as single-particle scattering with high signal-to-noise ratios. We demonstrate homogeneous and spatially invariant illumination profiles in combination with a convenient control over a wide range of illumination angles. Moreover, we quantitatively compare the fluorescence performance of our setup to objective-type TIR and demonstrate sub-nanometer localization accuracies for the scattering of 40 nm gold nanoparticles (AuNPs). When bound to individual kinesin-1 motors, the AuNPs reliably report on the characteristic 8 nm stepping along microtubules.


Assuntos
Aumento da Imagem/instrumentação , Lentes , Microscopia de Fluorescência/instrumentação , Nanotecnologia/instrumentação , Quartzo , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Methods Mol Biol ; 2604: 297-309, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773244

RESUMO

The preparation of biological samples, especially for live-cell microscopy, remains a major experimental challenge in the lab despite technological advances. In addition, high-resolution microscopy techniques require higher sample quality and uniformity, which is difficult to ensure during manual preparation while maintaining "ideal" growth conditions. In this protocol, we provide a way out by growing Arabidopsis thaliana seedlings directly in an imaging chamber, which eliminates invasive sample preparation directly before imaging. This method hinges on the precise placement of seeds into imaging chambers, which can be grown in conventional climate chambers. We detail three methods to grow hypocotyls, cotyledons, leaves, and roots for high-resolution and long-term imaging of the plant cytoskeleton. Furthermore, we show that the growth and development of seedlings inside the chambers can be externally manipulated by the addition of chemicals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plântula , Citoesqueleto , Microtúbulos , Plantas , Raízes de Plantas
13.
Quant Plant Biol ; 4: e5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251797

RESUMO

All plant cells are encased by walls, which provide structural support and control their morphology. How plant cells regulate the deposition of the wall to generate complex shapes is a topic of ongoing research. Scientists have identified several model systems, the epidermal pavement cells of cotyledons and leaves being an ideal platform to study the formation of complex cell shapes. These cells indeed grow alternating protrusions and indentations resulting in jigsaw puzzle cell shapes. How and why these cells adopt such shapes has shown to be a challenging problem to solve, notably because it involves the integration of molecular and mechanical regulation together with cytoskeletal dynamics and cell wall modifications. In this review, we highlight some recent progress focusing on how these processes may be integrated at the cellular level along with recent quantitative morphometric approaches.

14.
Eye Contact Lens ; 38(4): 208-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22293406

RESUMO

PURPOSE: The aim was to examine the interaction of lactoferrin with gram-negative bacteria isolated from ocular adverse responses. METHODS: Strains representing the species Pseudomonas aeruginosa (six strains), Aeromonas hydrophila, Escherichia coli, Stenotrophomonas maltophilia, and Haemophilus influenza were tested. A modified enzyme-linked immunosorbent assay was used to measure the binding of the strains to native and deglycosylated lactoferrin. The effect on the viability of strains was measured by incubating strains in media containing lactoferrin as the sole carbon and nitrogen source. Siderophore production by strains was measured using an established assay. RESULTS: All the strains except the single strain of E. coli (Ecol8) were capable of binding to lactoferrin. The ocular isolate of H. influenzae showed strong affinity for lactoferrin. The P. aeruginosa strains and the strain of S. maltophilia showed significantly reduced (80%-100% reduction; P<0.05) binding to lactoferrin that had been enzymatically deglycosylated, whereas deglycosylation had no effect on the binding of other strains/species tested. Most strains were able to grow and produce siderophores in the presence of lactoferrin as the sole carbon and nitrogen source. CONCLUSIONS: The ability to bind to and grow on lactoferrin can be important for gram-negative pathogens that colonize the ocular environment, because this could allow bacteria to survive and propagate in the presence of tear fluid.


Assuntos
Aderência Bacteriana/fisiologia , Infecções Oculares Bacterianas/microbiologia , Bactérias Gram-Negativas/fisiologia , Lactoferrina/fisiologia , Ensaio de Imunoadsorção Enzimática , Infecções Oculares Bacterianas/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Lactoferrina/farmacologia
15.
Rev Esc Enferm USP ; 46 Spec No: 91-8, 2012 Oct.
Artigo em Português | MEDLINE | ID: mdl-23250264

RESUMO

Laboratory experimental study that compared the effectiveness of five methods of disinfection for the removal of biofilm in gastrointestinal endoscopes. New transparent tubes of polytetrafluoroethylene (Teflon®) were used as specimens to simulate the channels of flexible endoscopes. After pre-cleaning the tubes were intentionally contaminated with Pseudomonas aeruginosa and subjected to disinfection methods. As a result, none removed 100% of these biofilms. What else physically removed biofilm was 2% glutaraldehyde in an automatic processor, probably justified by the double clean, since the equipment has this phase at the beginning of your cycle. The method less effective for removing plaque and other debris was the acidic electrolytic water. These results suggest that the cleaning is most striking in the removal of biofilms that disinfection of consecutive since glutaraldehyde disinfectant by machine is more efficient, it is a fastener organic waste.


Assuntos
Biofilmes , Desinfecção/métodos , Endoscópios , Contaminação de Equipamentos
16.
Nat Plants ; 8(9): 1064-1073, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35982303

RESUMO

Mechanical forces control development in plants and animals, acting as cues in pattern formation and as the driving force of morphogenesis. In mammalian cells, molecular assemblies residing at the interface of the cell membrane and the extracellular matrix play an important role in perceiving and transmitting external mechanical signals to trigger physiological responses. Similar processes occur in plants, but there is little understanding of the molecular mechanisms and their genetic basis. Here, we show that the number and movement directions of cellulose synthase complexes (CSCs) at the plasma membrane vary during initial stages of development in the cotyledon epidermis of Arabidopsis, closely mirroring the microtubule organization. Uncoupling microtubules and CSCs resulted in enhanced microtubule co-alignment as caused by mechanical stimuli driven either by cell shape or by tissue-scale physical perturbations. Furthermore, micromechanical perturbation resulted in depletion of CSCs from the plasma membrane, suggesting a possible link between cellulose synthase removal from the plasma membrane and microtubule response to mechanical stimuli. Taken together, our results suggest that the interaction of cellulose synthase with cortical microtubules forms a physical continuum between the cell wall, plasma membrane and the cytoskeleton that modulates the mechano-response of the cytoskeleton.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosiltransferases/genética , Microtúbulos/metabolismo
17.
Open Biol ; 12(5): 210208, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35506204

RESUMO

All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.


Assuntos
Parede Celular , Xilema , Membrana Celular/metabolismo , Parede Celular/metabolismo , Microtúbulos/metabolismo , Plantas/metabolismo , Água/metabolismo , Xilema/metabolismo
18.
Adv Mater ; 34(4): e2103660, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34693561

RESUMO

Processing 2D materials into printable or coatable inks for the fabrication of functional devices has proven to be quite difficult. Additives are often used in large concentrations to address the processing challenges, but they drastically degrade the electronic properties of the materials. To remove the additives a high-temperature post-deposition treatment can be used, but this complicates the fabrication process and limits the choice of materials (i.e., no heat-sensitive materials). In this work, by exploiting the unique properties of 2D materials, a universal strategy for the formulation of additive-free inks is developed, in which the roles of the additives are taken over by van der Waals (vdW) interactions. In this new class of inks, which is termed "vdW inks", solvents are dispersed within the interconnected network of 2D materials, minimizing the dispersibility-related limitations on solvent selection. Furthermore, flow behavior of the inks and mechanical properties of the resultant films are mainly controlled by the interflake vdW attractions. The structure of the vdW inks, their rheological properties, and film-formation behavior are discussed in detail. Large-scale production and formulation of the vdW inks for major high-throughput printing and coating methods, as well as their application for room-temperature fabrication of functional films/devices are demonstrated.

19.
Curr Biol ; 31(15): 3262-3274.e6, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107303

RESUMO

Mechanical stress influences cell- and tissue-scale processes across all kingdoms. It remains challenging to delineate how mechanical stress, originating at these different length scales, impacts cell and tissue form. We combine growth tracking of cells, quantitative image analysis, as well as molecular and mechanical perturbations to address this problem in pavement cells of Arabidopsis thaliana cotyledon tissue. We show that microtubule organization based on chemical signals and cell-shape-derived mechanical stress varies during early stages of pavement cell development and is mediated by the evolutionary conserved proteins, KATANIN and CLASP. However, we find that these proteins regulate microtubule organization in response to tissue-scale mechanical stress to different extents in the cotyledon epidermis. Our results further demonstrate that regulation of cotyledon form is uncoupled from the mechanical-stress-dependent control of pavement cell shape that relies on microtubule organization governed by subcellular mechanical stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Katanina , Proteínas Associadas aos Microtúbulos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/metabolismo , Katanina/genética , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Estresse Mecânico
20.
Nat Commun ; 12(1): 669, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510146

RESUMO

Plants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Microtúbulos/metabolismo , Xilema/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Hipocótilo/citologia , Hipocótilo/genética , Hipocótilo/metabolismo , Microscopia de Fluorescência/métodos , Plantas Geneticamente Modificadas , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Xilema/citologia , Xilema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA