Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216545

RESUMO

Magnetic resonance imaging (MRI) is routinely used in the musculoskeletal system to measure skeletal muscle structure and pathology in health and disease. Recently, it has been shown that MRI also has promise for detecting the functional changes, which occur in muscles, commonly associated with a range of neuromuscular disorders. This review focuses on novel adaptations of MRI, which can detect the activity of the functional sub-units of skeletal muscle, the motor units, referred to as "motor unit MRI (MUMRI)." MUMRI utilizes pulsed gradient spin echo, pulsed gradient stimulated echo and phase contrast MRI sequences and has, so far, been used to investigate spontaneous motor unit activity (fasciculation) and used in combination with electrical nerve stimulation to study motor unit morphology and muscle twitch dynamics. Through detection of disease driven changes in motor unit activity, MUMRI shows promise as a tool to aid in both earlier diagnosis of neuromuscular disorders and to help in furthering our understanding of the underlying mechanisms, which proceed gross structural and anatomical changes within diseased muscle. Here, we summarize evidence for the use of MUMRI in neuromuscular disorders and discuss what future research is required to translate MUMRI toward clinical practice. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.

2.
J Neurosci ; 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35999052

RESUMO

Motor units convert the last neural code of movement into muscle forces. The classic view of motor unit control is that the central nervous system sends common synaptic inputs to motoneuron pools and that motoneurons respond in an orderly fashion dictated by the size principle. This view however is in contrast with the large number of dimensions observed in motor cortex which may allow individual and flexible control of motor units. Evidence for flexible control of motor units may be obtained by tracking motor units longitudinally during tasks with some level of behavioural variability. Here we identified and tracked populations of motor units in the brachioradialis muscle of two macaque monkeys during ten sessions spanning over one month with a broad range of rate of force development (1.8 - 38.6 N·m·s-1). We found a very stable recruitment order and discharge characteristics of the motor units over sessions and contraction trials. The small deviations from orderly recruitment were fully predicted by the motor unit recruitment intervals, so that small shifts in recruitment thresholds happened only during contractions at high rate of force development. Moreover, we also found that one component explained more than ∼50% of the motor unit discharge rate variance, and that the remaining components represented a time-shifted version of the first. In conclusion, our results show that motoneurons recruitment is determined by the interplay of the size principle and common input and that this recruitment scheme is not violated over time nor by the speed of the contractions.SIGNIFICANCE STATEMENT:With a new non-invasive high-density electromyographic framework we show the activity of motor unit ensembles in macaques during voluntary contractions. The discharge characteristics of brachioradialis motor units revealed a relatively fixed recruitment order and discharge characteristics across days and rate of force developments. These results were further confirmed through invasive axonal stimulation and recordings of intramuscular electromyographic activity from 16 arm muscles. The study shows for the first time the feasibility of longitudinal non-invasive motor unit interfacing and tracking of the same motor units in non-human primates.

3.
J Magn Reson Imaging ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776094

RESUMO

BACKGROUND: Motor units (MUs) control the contraction of muscles and degenerate with age. It is therefore of interest to measure whole muscle and MU twitch profiles in aging skeletal muscle. PURPOSE: Apply phase contrast MU MRI (PC-MUMRI) in a cohort of healthy adults to measure whole anterior compartment, individual muscles, and single MU twitch profiles in the calf. Assess the effect of age and sex on contraction and relaxation times. STUDY TYPE: Prospective cross-sectional study. SUBJECTS: Sixty-one healthy participants (N = 32 male; age 55 ± 16 years [range: 26-82]). FIELD STRENGTH/SEQUENCES: 3 T, velocity encoded gradient echo and single shot spin echo pulsed gradient spin echo, echo-planar imaging. ASSESSMENT: Anterior shin compartment (N = 47), individual muscle (tibialis anterior, extensor digitorum longus, peroneus longus; N = 47) and single MU (N = 34) twitch profiles were extracted from the data to calculate contraction and relaxation times. STATISTICAL TESTS: Multivariable linear regression to investigate relationships between age, sex and contraction and relaxation times of the whole anterior compartment. Pearson correlation to investigate relationships between age and contraction and relaxation times of individual muscles and single MUs. A P value <0.05 was considered statistically significant. RESULTS: Age and sex predicted significantly increased contraction and relaxation time for the anterior compartment. Females had significantly longer contraction times than males (females 86 ± 8 msec, males 80 ± 9 msec). Relaxation times were longer, not significant (females 204 ± 36 msec, males 188 ± 34 msec, P = 0.151). Contraction and relaxation times of single MUs showed no change with age (P = 0.462, P = 0.534, respectively). DATE CONCLUSION: Older participants had significantly longer contraction and relaxation times of the whole anterior compartment compared to younger participants. Females had longer contraction and relaxation times than males, significant for contraction time. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

4.
Muscle Nerve ; 66(6): 730-735, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36106775

RESUMO

INTRODUCTION/AIMS: Measuring the spatial dimensions of a single motor unit remains a challenging problem, and current techniques, such as scanning electromyography (EMG), tend to underestimate the true dimensions. In this study we aimed to estimate more accurately the dimensions of a single motor unit by developing a clinically applicable scanning EMG protocol that utilizes ultrasound imaging to visualize and target a transect through the center of a single motor unit. METHODS: Single motor unit twitches in the tibialis anterior muscles of healthy volunteers were elicited via stimulation of the fibular nerve, visualized with ultrasound, and targeted with an intramuscular EMG electrode. The electrode was moved by hand in small steps through the motor unit territory. Ultrasound video output was synchronized to EMG capture, and the needle position was tracked at each step. RESULTS: Eight recordings from six participants were collected. The technique was quick and easy to perform (mean time, 6.1 minutes) with reasonable spatial resolution (mean step size, 1.85 mm), yielding motor unit territory sizes between 1.53 and 14.65 mm (mean, 7.15 mm). DISCUSSION: Ultrasound-guided motor unit scanning EMG is a quick and accurate method for obtaining a targeted motor unit transect. This combination of two readily available clinical tools provides insights into the dimensions and internal structure of the motor unit as a marker for neuromuscular conditions.


Assuntos
Doenças Neuromusculares , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Ultrassonografia , Ultrassonografia de Intervenção
5.
NMR Biomed ; 34(3): e4466, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410277

RESUMO

Localised signal voids in diffusion-weighted (DW) images of skeletal muscle have been postulated to occur as a result of muscle fibre contraction and relaxation. We investigated the contrast mechanism of these signal voids using a combination of modelling and experimental measurements by employing DW and phase contrast (PC) imaging sequences. The DW signal and PC signal were simulated for each time point of a theoretical muscle twitch. The model incorporated compaction (simulating actively contracting muscle fibres) and translation (simulating passively moving surrounding fibres). The model suggested that the DW signal depended on contraction time and compaction whereas the PC signal depended on contraction time, compaction and translation. In a retrospective study, we tested this model with subgroup analyses on 10 healthy participants. Electrical nerve stimulation was used to generate muscle twitches in lower leg muscles; the resulting force was measured using an MR-compatible force transducer. At current levels causing a visible muscle twitch (~13 mA), the width of the first signal drop in the DW signal (mean ± SD: 103 ± 20 ms) was comparable with the force contraction time (93 ± 34 ms; intraclass correlation coefficient [ICC] = 0.717, P = .010). At current levels activating single motor units (~9 mA), the contraction time determined from the DW signal was 75 ± 13 ms and comparable with the PC contraction time (81 ± 15 ms; ICC = 0.925, P = .001). The maximum positive velocity was 0.55 ± 0.26 cm/s and the displacement was 0.20 ± 0.10 mm. Voxel-wise analysis revealed localised DW changes occurring together with more widespread phase changes. In conclusion, local signal attenuations in DW images following muscle fibre activation are primarily caused by compaction. The PC sequence also detects translating muscle tissue being passively pulled. The magnitude of the changes in DW and PC images depends on the twitch's contractile properties and percentage contraction. DW imaging and PC imaging can therefore measure twitch profiles of skeletal muscle fibres.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Adulto , Simulação por Computador , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fatores de Tempo , Adulto Jovem
6.
J Phys Ther Sci ; 33(11): 801-808, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34776613

RESUMO

[Purpose] We have previously shown inversion therapy to be effective in a small prospective randomised controlled trial of patients with lumbar disc protrusions. Our purpose now was to measure symptoms and to compare the surgery rate following inversion for 85 participants with the surgery rate in 3 control groups. [Participants and Methods] Each of the 85 inverted participants acted as their own control for the "symptomatic" part of the study. In the "Need for surgery" part of the study, one control group was made up of similar patients with leg pain and sciatica who were referred to the same clinic in the same year. Two additional control groups were examined: the original control group from the pilot trial and the lumbar disc surgery waiting list patients. [Results] Inversion therapy relieved symptoms: there were improvements in the Visual Analogue Score, Roland Morris and Oswestry Disease indices and Health Utility Score compared with their pre-treatment status. Also, the 2 year surgery rate in the inversion participants in the registry (21%) was significantly lower than in the matched control group (39% at two years and 43% at four years). It was also lower than the surgery rate in the other 2 control groups. [Conclusion] Inversion therapy relieved symptoms and avoided surgery.

7.
Ann Neurol ; 85(3): 455-459, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30688362

RESUMO

A novel diffusion-weighted magnetic resonance imaging protocol sensitive to contraction of individual skeletal motor units was developed. We applied this technique to the lower limb muscles of 4 patients with confirmed amyotrophic lateral sclerosis (ALS) and 6 healthy controls. A 3-minute scan revealed florid fasciculation in ALS patients, involving both superficial and deep muscles, and at a frequency higher than in healthy controls. This novel imaging technique reveals hitherto unobtainable information on human motor unit structure and function, which may allow earlier diagnosis and recruitment to clinical trials. ANN NEUROL 2019;85:455-459.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico por imagem , Fasciculação/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Adulto , Idoso , Estudos de Casos e Controles , Imagem de Difusão por Ressonância Magnética , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
J Neurophysiol ; 119(1): 49-61, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954894

RESUMO

Acute in vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike-and-wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalized and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden, and apparent anatomical origin (thalamic, neocortical, or both), but any relationship between this heterogeneity and underlying pathology remains elusive. In this study we demonstrate that physiological delta-frequency rhythms act as an effective substrate to permit modeling of SpW of cortical origin and may help to address this issue. For a starting point of delta activity, multiple subtypes of SpW could be modeled computationally and experimentally by either enhancing the magnitude of excitatory synaptic events ascending from neocortical layer 5 to layers 2/3 or selectively modifying superficial layer GABAergic inhibition. The former generated SpW containing multiple field spikes with long interspike intervals, whereas the latter generated SpW with short-interval multiple field spikes. Both types had different laminar origins and each disrupted interlaminar cortical dynamics in a different manner. A small number of examples of human recordings from patients with different diagnoses revealed SpW subtypes with the same temporal signatures, suggesting that detailed quantification of the pattern of spikes in SpW discharges may be a useful indicator of disparate underlying epileptogenic pathologies. NEW & NOTEWORTHY Spike-and-wave-type discharges (SpW) are a common feature in many epilepsies. Their electrographic manifestation is highly varied, as are available genetic clues to associated underlying pathology. Using computational and in vitro models, we demonstrate that distinct subtypes of SpW are generated by lamina-selective disinhibition or enhanced interlaminar excitation. These subtypes could be detected in at least some noninvasive patient recordings, suggesting more detailed analysis of SpW may be useful in determining clinical pathology.


Assuntos
Ritmo Delta , Epilepsia/fisiopatologia , Potenciais Pós-Sinápticos Excitadores , Neocórtex/fisiopatologia , Inibição Neural , Animais , Criança , Neurônios GABAérgicos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/citologia , Ratos , Ratos Wistar
9.
J Neurosci ; 33(26): 10750-61, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804097

RESUMO

Delta oscillations (1-4 Hz) associate with deep sleep and are implicated in memory consolidation and replay of cortical responses elicited during wake states. A potent local generator has been characterized in thalamus, and local generators in neocortex have been suggested. Here we demonstrate that isolated rat neocortex generates delta rhythms in conditions mimicking the neuromodulatory state during deep sleep (low cholinergic and dopaminergic tone). The rhythm originated in an NMDA receptor-driven network of intrinsic bursting (IB) neurons in layer 5, activating a source of GABAB receptor-mediated inhibition. In contrast, regular spiking (RS) neurons in layer 5 generated theta-frequency outputs. In layer 2/3 principal cells, outputs from IB cells associated with IPSPs, whereas those from layer 5 RS neurons related to nested bursts of theta-frequency EPSPs. Both interlaminar spike and field correlations revealed a sequence of events whereby sparse spiking in layer 2/3 was partially reflected back from layer 5 on each delta period. We suggest that these reciprocal, interlaminar interactions may represent a "Helmholtz machine"-like process to control synaptic rescaling during deep sleep.


Assuntos
Ritmo Delta/fisiologia , Neocórtex/fisiologia , Ritmo Teta/fisiologia , Algoritmos , Animais , Simulação por Computador , Eletroencefalografia , Potenciais Evocados/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Espaço Extracelular/fisiologia , Junções Comunicantes/fisiologia , Masculino , Memória/fisiologia , Modelos Neurológicos , Ratos , Ratos Wistar , Fases do Sono/fisiologia , Sinapses/fisiologia , Vigília/fisiologia
10.
Eur J Neurosci ; 39(1): 46-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24118191

RESUMO

Fast ripples (FRs) are network oscillations, defined variously as having frequencies of > 150 to > 250 Hz, with a controversial mechanism. FRs appear to indicate a propensity of cortical tissue to originate seizures. Here, we demonstrate field oscillations, at up to 400 Hz, in spontaneously epileptic human cortical tissue in vitro, and present a network model that could explain FRs themselves, and their relation to 'ordinary' (slower) ripples. We performed network simulations with model pyramidal neurons, having axons electrically coupled. Ripples (< 250 Hz) were favored when conduction of action potentials, axon to axon, was reliable. Whereas ripple population activity was periodic, firing of individual axons varied in relative phase. A switch from ripples to FRs took place when an ectopic spike occurred in a cell coupled to another cell, itself multiply coupled to others. Propagation could then start in one direction only, a condition suitable for re-entry. The resulting oscillations were > 250 Hz, were sustained or interrupted, and had little jitter in the firing of individual axons. The form of model FR was similar to spontaneously occurring FRs in excised human epileptic tissue. In vitro, FRs were suppressed by a gap junction blocker. Our data suggest that a given network can produce ripples, FRs, or both, via gap junctions, and that FRs are favored by clusters of axonal gap junctions. If axonal gap junctions indeed occur in epileptic tissue, and are mediated by connexin 26 (recently shown to mediate coupling between immature neocortical pyramidal cells), then this prediction is testable.


Assuntos
Ondas Encefálicas , Sinapses Elétricas/fisiologia , Epilepsia/fisiopatologia , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Potenciais de Ação , Adolescente , Adulto , Idoso , Axônios/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Piramidais/fisiologia
11.
Clin Neurophysiol ; 161: 246-255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448302

RESUMO

OBJECTIVE: Compare fasciculation rates between amyotrophic lateral sclerosis (ALS) patients and healthy controls in body regions relevant for diagnosing ALS using motor unit MRI (MUMRI) at baseline and 6 months follow-up, and relate this to single-channel surface EMG (SEMG). METHODS: Tongue, biceps brachii, paraspinals and lower legs were assessed with MUMRI and biceps brachii and soleus with SEMG in 10 healthy controls and 10 patients (9 typical ALS, 1 primary lateral sclerosis [PLS]). RESULTS: MUMRI-detected fasciculation rates in typical ALS patients were higher compared to healthy controls for biceps brachii (2.40 ± 1.90 cm-3min-1vs. 0.04 ± 0.10 cm-3min-1, p = 0.004), paraspinals (1.14 ± 1.61 cm-3min-1vs. 0.02 ± 0.02 cm-3min-1, p = 0.016) and lower legs (1.42 ± 1.27 cm-3min-1vs. 0.13 ± 0.10 cm-3min-1, p = 0.004), but not tongue (1.41 ± 1.94 cm-3min-1vs. 0.18 ± 0.18 cm-3min-1, p = 0.556). The PLS patient showed no fasciculation. At baseline, 6/9 ALS patients had increased fasciculation rates compared to healthy controls in at least 2 body regions. At follow-up every patient had increased fasciculation rates in at least 2 body regions. The MUMRI-detected fasciculation rate correlated with SEMG-detected fasciculation rates (τ = 0.475, p = 0.006). CONCLUSION: MUMRI can non-invasively image fasciculation in multiple body regions and appears sensitive to disease progression in individual patients. SIGNIFICANCE: MUMRI has potential as diagnostic tool for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Eletromiografia , Fasciculação , Imageamento por Ressonância Magnética , Humanos , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Fasciculação/fisiopatologia , Fasciculação/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idoso , Eletromiografia/métodos , Músculo Esquelético/fisiopatologia , Músculo Esquelético/diagnóstico por imagem , Adulto , Neurônios Motores/fisiologia , Língua/fisiopatologia , Língua/diagnóstico por imagem
12.
Proc Natl Acad Sci U S A ; 107(1): 338-43, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19966298

RESUMO

Very fast oscillations (VFOs, >80 Hz) are important for physiological brain processes and, in excess, with certain epilepsies. Putative mechanisms for VFO include interneuron spiking and network activity in coupled pyramidal cell axons. It is not known whether either, or both, of these apply in pathophysiological conditions. Spontaneously occurring interictal discharges occur in human tissue in vitro, resected from neocortical epileptic foci. VFO associated with these discharges was manifest in both field potential and, with phase delay, in excitatory synaptic inputs to fast spiking interneurons. Recruitment of somatic pyramidal cell and interneuron spiking was low, with no correlation between VFO power and synaptic inputs to principal cells. Reducing synaptic inhibition failed to affect VFO occurrence, but they were abolished by reduced gap junction conductance. These data suggest a lack of a causal role for interneurons, and favor a nonsynaptic pyramidal cell network origin for VFO in epileptic human neocortex.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Adolescente , Adulto , Criança , Eletroencefalografia , Eletrofisiologia , Antagonistas GABAérgicos/farmacologia , Humanos , Interneurônios/citologia , Interneurônios/fisiologia , Pessoa de Meia-Idade , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Neocórtex/fisiologia , Piridazinas/farmacologia , Transmissão Sináptica/fisiologia , Lobo Temporal/citologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/fisiologia , Lobo Temporal/fisiopatologia , Adulto Jovem
13.
Epilepsia ; 53(7): 1205-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22686654

RESUMO

PURPOSE: We describe a form of very fast oscillation (VFO) in patient electrocorticography (ECoG) recordings, that can occur prior to ictal events, in which the frequency increases steadily from ≈ 30-40 to >120 Hz, over a period of seconds. We dub these events "glissandi" and describe a possible model for them. METHODS: Four patients with epilepsy had presurgical evaluations (with ECoG obtained in two of them), and excised tissue was studied in vitro, from three of the patients. Glissandi were seen spontaneously in vitro, associated with ictal events-using acute slices of rat neocortex-and they were simulated using a network model of 15,000 detailed layer V pyramidal neurons, coupled by gap junctions. KEY FINDINGS: Glissandi were observed to arise from human temporal neocortex. In vitro, they lasted 0.2-4.1 s, prior to ictal onset. Similar events were observed in the rat in vitro in layer V of frontal neocortex when alkaline solution was pressure-ejected; glissandi persisted when γ-aminobutyric acid A (GABA(A)), GABA(B), and N-methyl-d-aspartate (NMDA), and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors were blocked. Nonalkaline conditions prevented glissando generation. In network simulations it was found that steadily increasing gap junction conductance would lead to the observed steady increase in VFO field frequency. This occurred because increasing gap junction conductance shortened the time required for an action potential to cross from cell to cell. SIGNIFICANCE: The in vitro and modeling data are consistent with the hypothesis that glissandi arise when pyramidal cell gap junction conductances rise over time, possibly as a result of an alkaline fluctuation in brain pH.


Assuntos
Potenciais de Ação/fisiologia , Sincronização Cortical/fisiologia , Epilepsia/fisiopatologia , Junções Comunicantes/fisiologia , Neocórtex/fisiopatologia , 2-Amino-5-fosfonovalerato/farmacologia , Potenciais de Ação/efeitos dos fármacos , Adulto , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Simulação por Computador , Sincronização Cortical/efeitos dos fármacos , Estimulação Elétrica , Eletroencefalografia , Epilepsia/patologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Junções Comunicantes/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia
14.
Clin Neurophysiol ; 136: 82-92, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151966

RESUMO

OBJECTIVES: In many neuromuscular diseases, weakness results from a disruption in muscle fibres' arrangement within a motor unit. Limitations in current techniques mean that the spatial distribution of fibres in human motor units remains unknown. METHODS: A flexible multi-channel electrode was developed and bonded to a clinical electromyography (EMG) needle. Muscle fibre action potentials were localised using a novel deconvolution method. This was tested using simulated data, and in recordings collected from the tibialis anterior muscle of healthy subjects. RESULTS: Simulated data indicated good localisation reliability across all sections of the electrode except the end sections. A corrected fibre density was estimated up to 1.4 fibres/mm2. Across five recordings from three individuals, between 4 and 14 motor units were detected. Between 1 and 20 muscle fibres were localised per motor unit within the electrode detection area, with up to 220 muscle fibres localised per recording, with overlapping motor unit territories. CONCLUSIONS: We provide the first direct evidence that human motor units spatially overlap, as well as data related to the spatial arrangement of muscle fibres within a motor unit. SIGNIFICANCE: As well as providing insights into normal human motor physiology, this technology could lead to faster and more accurate diagnosis in patients with neuromuscular diseases.


Assuntos
Neurônios Motores , Doenças Neuromusculares , Potenciais de Ação , Eletromiografia/métodos , Humanos , Neurônios Motores/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Doenças Neuromusculares/diagnóstico por imagem , Reprodutibilidade dos Testes
15.
Clin Neurophysiol ; 141: 91-100, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853787

RESUMO

OBJECTIVE: To assess in-vivo cross-sectional and 3D morphology of human motor units in hand, forearm and lower leg muscles using magnetic resonance imaging (MRI). METHODS: Diffusion weighted MRI was used with in-scanner electrical stimulation in healthy controls to image motor units at a single slice in lower leg, forearm and hand muscles (n = 6) and multiple slices in the lower leg for 3D assessment (n = 7). RESULTS: Motor unit cross-sectional area (CSA) and maximum Feret diameter (FDmax) did not differ between the lower leg (CSA: 22.4 ± 8.4 mm2; FDmax: 8.7 ± 2.4 mm), forearm (CSA: 23.6 ± 14.1 mm2; FDmax: 9.0 ± 3.3 mm) and hand (CSA: 26.8 ± 12.8 mm2 and FDmax: 9.6 ± 2.7 mm) (ANOVA; p = 0.487 and p = 0.587, respectively). Lower leg motor units were 8.0 ± 3.8 cm long with largest CSA in the motor unit's middle section. 3D motor unit imaging revealed a complex structure with several units splitting and re-forming along their length. CONCLUSIONS: Motor unit MRI (MUMRI) can be applied to upper limb muscles, and can reveal the 3D structure of human motor units in-vivo. SIGNIFICANCE: MUMRI provides the first in-vivo 2D images of upper limb motor units and 3D images of lower leg motor units. 3D imaging suggest a more complex human motor unit structure than previously thought.


Assuntos
Imageamento Tridimensional , Córtex Motor , Eletromiografia/métodos , Humanos , Perna (Membro)/fisiologia , Extremidade Inferior , Córtex Motor/fisiologia , Músculo Esquelético/diagnóstico por imagem
16.
Appl Opt ; 50(28): F72-9, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22016249

RESUMO

Noctilucent, or "night-shining," clouds (NLCs) are a spectacular optical nighttime phenomenon that is very often neglected in the context of atmospheric optics. This paper gives a brief overview of current understanding of NLCs by providing a simple physical picture of their formation, relevant observational characteristics, and scientific challenges of NLC research. Modern ground-based photographic NLC observations, carried out in the framework of automated digital camera networks around the globe, are outlined. In particular, the obtained results refer to studies of single quasi-stationary waves in the NLC field. These waves exhibit specific propagation properties--high localization, robustness, and long lifetime--that are the essential requisites of solitary waves.

17.
Amyotroph Lateral Scler ; 11(5): 443-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20698806

RESUMO

Our objective was to analyse how patients with amyotrophic lateral sclerosis (ALS) are examined neurophysiologically at different European centres in order to identify possible areas with variation or disagreement in the neurophysiological examination of ALS. Ninety-three prospectively collected examinations from six out of seven neurophysiologists in the European ESTEEM project were analysed. All examinations were peer reviewed with an electromyographic consensus diagnosis of motor neuron disease and the diagnosis of ALS confirmed by clinical follow-up. The examinations were analysed for differences among the physicians in EMG techniques and number and distribution of examined and abnormal muscles and nerve segments. Considerable variation was found among the physicians regarding the average numbers of performed and abnormal EMG and nerve conduction studies per patient, the EMG techniques used, and the topographical distribution of the examined muscles. The existence of two different examination approaches, one with quantitative EMG analyses and relatively few muscles studied, and one with more muscles studied using qualitative methods was clearly confirmed in the present study. The large variation among the physicians indicates that different criteria were used, or that criteria were used inconsistently.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Exame Neurológico/métodos , Exame Neurológico/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/fisiopatologia , Eletromiografia/métodos , Europa (Continente) , Humanos , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Médicos
18.
Clin Neurophysiol ; 131(6): 1399-1406, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32122767

RESUMO

OBJECTIVE: To determine the size, shape and distribution of single human motor units in-vivo in healthy controls of different ages. METHODS: A novel diffusion-weighted magnetic resonance imaging (MRI) technique was used in combination with in-scanner electrical stimulation to quantify the shape, cross-sectional area, and dimensions of individual motor units in 10 healthy subjects. RESULTS: Thirty-one discrete motor units were studied. The majority were elliptical or crescent shaped, but occasional split motor units were observed. The mean motor unit cross sectional area was 26.7 ± 11.2 mm2, the mean maximum dimension was 10.7 ± 3.3 mm, and the mean minimum dimension was 4.5 ± 1.2 mm. Subjects aged over 40 had significantly larger maximum dimensions than those below this age (p < 0.05). CONCLUSIONS: Motor unit MRI (MUMRI) is a novel technique capable of revealing the size, shape and position of multiple motor units in human muscles. It is reproducible, non-invasive, and sufficiently sensitive to detect physiologically relevant changes in motor unit morphology with age. SIGNIFICANCE: To our knowledge, these results provide the first imaging assessment of human motor unit morphology. The technique shows promise both as a diagnostic tool and as a biomarker in longitudinal studies of disease progression.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neurônios Motores/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/inervação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Clin Neurophysiol ; 119(5): 1106-10, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18313354

RESUMO

OBJECTIVE: To evaluate sensory nerve conduction studies in ALS in a prospective multicentre study involving 7 neurophysiologists from 6 European countries. METHODS: Bilateral sural potentials were obtained in 35 ALS patients and 35 age-matched controls according to a standardised examination protocol using antidromic surface technique. The recordings from the right sural nerve of the controls were used for reference values. A reduction from the mean of controls greater than 2 SDs was considered abnormal. RESULTS: Reduced sensory nerve action potential (SNAP) amplitude or reduced conduction velocity (CV), or both, was found in 6 ALS patients (17%). Decrease in CV was the most frequent finding, and was observed in 8 nerves from 5 patients. Reduced SNAP amplitude was found in 2 nerves from 2 patients. All changes were minor ranging from -2.1 to -3.2 SDs. CONCLUSIONS: This is the first standardised multicentre study on sensory potentials in ALS. It confirms that although normal sensory findings should be expected in the majority of ALS patients, minor abnormalities are not uncommon. SIGNIFICANCE: Mild sensory abnormalities do not necessarily exclude a diagnosis of ALS.


Assuntos
Potenciais de Ação/fisiologia , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/fisiopatologia , Condução Nervosa/fisiologia , Nervo Sural/fisiopatologia , Adulto , Idoso , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA