Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Kidney Int ; 104(1): 90-107, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37121432

RESUMO

The polyamines spermidine and spermine and their common precursor molecule putrescine are involved in tissue injury and repair. Here, we test the hypothesis that impaired polyamine homeostasis contributes to various kidney pathologies in mice during experimental models of ischemia-reperfusion, transplantation, rhabdomyolysis, cyclosporine treatment, arterial hypertension, diabetes, unilateral ureteral obstruction, high oxalate feeding, and adenine-induced injuries. We found a remarkably similar pattern in most kidney pathologies with reduced expression of enzymes involved in polyamine synthesis together with increased expression of polyamine degrading enzymes. Transcript levels of amine oxidase copper-containing 1 (Aoc1), an enzyme which catalyzes the breakdown of putrescine, were barely detectable by in situ mRNA hybridization in healthy kidneys. Aoc1 was highly expressed upon various experimental kidney injuries resulting in a significant reduction of kidney putrescine content. Kidney levels of spermine were also significantly reduced, whereas spermidine was increased in response to ischemia-reperfusion injury. Increased Aoc1 expression in injured kidneys was mainly accounted for by an Aoc1 isoform that harbors 22 additional amino acids at its N-terminus and shows increased secretion. Mice with germline deletion of Aoc1 and injured kidneys showed no decrease of kidney putrescine content; although they displayed no overt phenotype, they had fewer tubular casts upon ischemia-reperfusion injury. Hyperosmotic stress stimulated AOC1 expression at the transcriptional and post-transcription levels in metanephric explants and kidney cell lines. AOC1 expression was also significantly enhanced after kidney transplantation in humans. These data demonstrate that the kidneys respond to various forms of injury with down-regulation of polyamine synthesis and activation of the polyamine breakdown pathway. Thus, an imbalance in kidney polyamines may contribute to various etiologies of kidney injury.


Assuntos
Amina Oxidase (contendo Cobre) , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Poliaminas/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Acetiltransferases/genética , Acetiltransferases/metabolismo , Rim/patologia , Amina Oxidase (contendo Cobre)/metabolismo , Traumatismo por Reperfusão/patologia , Expressão Gênica
2.
Int J Med Microbiol ; 313(4): 151583, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37331050

RESUMO

Francisella tularensis is the causative agent of tularemia, a zoonotic disease with a wide host range. F. tularensis ssp. holarctica (Fth) is of clinical relevance for European countries, including Germany. Whole genome sequencing methods, including canonical Single Nucleotide Polymorphism (canSNP) typing and whole genome SNP typing, have revealed that European Fth strains belong to a few monophyletic populations. The majority of German Fth isolates belong to two basal phylogenetic clades B.6 (biovar I) and B.12 (biovar II). Strains of B.6 and B.12 seem to differ in their pathogenicity, and it has been shown that strains of biovar II are resistant against erythromycin. In this study, we present data corroborating our previous data demonstrating that basal clade B.12 can be divided into clades B.71 and B.72. By applying phylogenetic whole genome analysis as well as proteome analysis, we could verify that strains of these two clades are distinct from one another. This was confirmed by measuring the intensity of backscatter light on bacteria grown in liquid media. Strains belonging to clades B.6, B.71 or B.72 showed clade-specific backscatter growth curves. Furthermore, we present the whole genome sequence of strain A-1341, as a reference genome of clade B.71, and whole proteomes comparison of Fth strains belonging to clades B.6, B.71 and B.72. Further research is necessary to investigate phenotypes and putative differences in pathogenicity of the investigated different clades of Fth to better understand the relationship between observed phenotypes, pathogenicity and distribution of Fth strains.


Assuntos
Francisella tularensis , Tularemia , Animais , Francisella tularensis/genética , Filogenia , Tularemia/microbiologia , Zoonoses/microbiologia , Fenótipo
3.
Diabetologia ; 65(3): 528-540, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34846543

RESUMO

AIMS/HYPOTHESIS: Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells. METHODS: Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. RESULTS: Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60-90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. CONCLUSION/INTERPRETATION: WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease.


Assuntos
Dieta Hiperlipídica , Haploinsuficiência , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Termogênese/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo
4.
Appl Environ Microbiol ; 88(1): e0158321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644162

RESUMO

Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.


Assuntos
Burkholderia pseudomallei , Burkholderia , Animais , Técnicas de Tipagem Bacteriana , Burkholderia/genética , Burkholderia pseudomallei/genética , DNA Bacteriano/genética , Camundongos , Tipagem de Sequências Multilocus , Northern Territory , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
J Med Genet ; 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381729

RESUMO

PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD), caused by pathogenic variants of either PKD1 or PKD2, is characterised by wide interfamilial and intrafamilial phenotypic variability. This study aimed to determine the molecular basis of marked clinical variability in ADPKD family members and sought to analyse whether alterations of WT1 (Wilms tumour 1), encoding a regulator of gene expression, may have an impact on renal cyst formation. METHODS: ADPKD family members underwent clinical and molecular evaluation. Functionally, Pkd1 mRNA and protein expression upon Wt1 knockdown was evaluated in mouse embryonic kidneys and mesonephric M15 cells. RESULTS: By renal gene panel analysis, we identified two pathogenic variants in an individual with maternal history of ADPKD, however, without cystic kidneys but polycystic liver disease: a known PKD1 missense variant (c.8311G>A, p.Glu2771Lys) and a known de novo WT1 splice site variant (c.1432+4C>T). The latter was previously associated with imbalanced +/-KTS isoform ratio of WT1. In ex vivo organ cultures from mouse embryonic kidneys, Wt1 knockdown resulted in decreased Pkd1 expression on mRNA and protein level. CONCLUSION: While the role of WT1 in glomerulopathies has been well established, this report by illustrating genetic interaction with PKD1 proposes WT1 as potential modifier in ADPKD.

6.
Antonie Van Leeuwenhoek ; 113(10): 1531-1537, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32699967

RESUMO

Atypical brucellae show deviant phenotypes and/or genotypes. Besides Brucella inopinata, B. microti and B. vulpis, atypical strains have been described infecting humans, rodents, amphibians and fish. They represent potential zoonotic agents. Here, we provide evidence that reptiles as the remaining poikilothermic vertebrate class also represent susceptible hosts for atypical Brucella.


Assuntos
Brucella/classificação , Brucella/fisiologia , Especificidade de Hospedeiro , Lagartos/microbiologia , Animais , Feminino , Genoma Bacteriano , Genômica/métodos , Tipagem Molecular , Filogenia
7.
Infection ; 47(5): 863-868, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31073709

RESUMO

In July 2018, brucellosis was diagnosed in a German patient without a travel history to regions endemic for Brucella. Microbiological analysis, including whole-genome sequencing, revealed Brucella suis biovar 1 as the etiologic agent. Core-genome-based multilocus sequence-typing analysis placed the isolate in close proximity to strains originating from Argentina. Notably, despite a strong IgM response, the patient did not develop Brucella-specific IgG antibodies during infection. Here, we describe the clinical course of infection, the extensive epidemiological investigations, and discuss possible routes of transmission.


Assuntos
Anticorpos Antibacterianos/sangue , Brucella suis/isolamento & purificação , Brucelose/líquido cefalorraquidiano , Brucelose/diagnóstico por imagem , Cefaleia/microbiologia , Brucella suis/genética , Febre/microbiologia , Genótipo , Alemanha , Hepatomegalia/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Filogenia , Ultrassonografia , Sequenciamento Completo do Genoma
8.
J Biol Chem ; 292(49): 20281-20291, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29042436

RESUMO

Wilms tumor protein 1 (WT1) has been implicated in the control of several genes in sexual development, but its function in gonad formation is still unclear. Here, we report that WT1 stimulates expression of Kdr, the gene encoding VEGF receptor 2, in murine embryonic gonads. We found that WT1 and KDR are co-expressed in Sertoli cells of the testes and somatic cells of embryonic ovaries. Vivo-morpholino-mediated WT1 knockdown decreased Kdr transcripts in cultured embryonic gonads at multiple developmental stages. Furthermore, WT1 bound to the Kdr promoter in the chromatin of embryonic testes and ovaries. Forced expression of the WT1(-KTS) isoform, which functions as a transcription factor, increased KDR mRNA levels, whereas the WT1(+KTS) isoform, which acts presumably on the post-transcriptional level, did not. ChIP indicated that WT1(-KTS), but not WT1(+KTS), binds to the KDR promoter. Treatment with the KDR tyrosine kinase inhibitor SU1498 or the KDR ligand VEGFA revealed that KDR signaling represses the testis-promoting gene Sox9 in embryonic XX gonads. WT1 knockdown abrogated the stimulatory effect of SU1498-mediated KDR inhibition on Sox9 expression. Exposure to 1% O2 to mimic the low-oxygen conditions in the embryo increased Vegfa expression but did not affect Sox9 mRNA levels in gonadal explants. However, incubation in 1% O2 in the presence of SU1498 significantly reduced Sox9 transcripts in cultured testes and increased Sox9 levels in ovaries. These findings demonstrate that both the local oxygen environment and WT1, which enhances KDR expression, contribute to sex-specific Sox9 expression in developing murine gonads.


Assuntos
Gônadas/metabolismo , Hipóxia/fisiopatologia , Proteínas Repressoras/genética , Fatores de Transcrição SOX9/genética , Transcrição Gênica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Animais , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/embriologia , Masculino , Camundongos , Ovário/embriologia , Ovário/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Testículo/embriologia , Testículo/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas WT1
9.
J Clin Microbiol ; 56(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29925641

RESUMO

The use of whole-genome sequencing (WGS) using next-generation sequencing (NGS) technology has become a widely accepted method for microbiology laboratories in the application of molecular typing for outbreak tracing and genomic epidemiology. Several studies demonstrated the usefulness of WGS data analysis through single-nucleotide polymorphism (SNP) calling from a reference sequence analysis for Brucella melitensis, whereas gene-by-gene comparison through core-genome multilocus sequence typing (cgMLST) has not been explored so far. The current study developed an allele-based cgMLST method and compared its performance to that of the genome-wide SNP approach and the traditional multilocus variable-number tandem repeat analysis (MLVA) on a defined sample collection. The data set was comprised of 37 epidemiologically linked animal cases of brucellosis as well as 71 isolates with unknown epidemiological status, composed of human and animal samples collected in Italy. The cgMLST scheme generated in this study contained 2,704 targets of the B. melitensis 16M reference genome. We established the potential criteria necessary for inclusion of an isolate into a brucellosis outbreak cluster to be ≤6 loci in the cgMLST and ≤7 in WGS SNP analysis. Higher phylogenetic distance resolution was achieved with cgMLST and SNP analysis than with MLVA, particularly for strains belonging to the same lineage, thereby allowing diverse and unrelated genotypes to be identified with greater confidence. The application of a cgMLST scheme to the characterization of B. melitensis strains provided insights into the epidemiology of this pathogen, and it is a candidate to be a benchmark tool for outbreak investigations in human and animal brucellosis.


Assuntos
Brucella melitensis/classificação , Brucella melitensis/genética , Brucelose/epidemiologia , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único/genética , Animais , Brucelose/microbiologia , Surtos de Doenças , Genoma Bacteriano/genética , Genótipo , Humanos , Itália/epidemiologia , Repetições Minissatélites/genética , Epidemiologia Molecular , Filogenia , Sequenciamento Completo do Genoma
10.
Mol Biol Evol ; 33(11): 2911-2923, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27578768

RESUMO

The Justinianic Plague, which started in the sixth century and lasted to the mid eighth century, is thought to be the first of three historically documented plague pandemics causing massive casualties. Historical accounts and molecular data suggest the bacterium Yersinia pestis as its etiological agent. Here we present a new high-coverage (17.9-fold) Y. pestis genome obtained from a sixth-century skeleton recovered from a southern German burial site close to Munich. The reconstructed genome enabled the detection of 30 unique substitutions as well as structural differences that have not been previously described. We report indels affecting a lacl family transcription regulator gene as well as nonsynonymous substitutions in the nrdE, fadJ, and pcp genes, that have been suggested as plague virulence determinants or have been shown to be upregulated in different models of plague infection. In addition, we identify 19 false positive substitutions in a previously published lower-coverage Y. pestis genome from another archaeological site of the same time period and geographical region that is otherwise genetically identical to the high-coverage genome sequence reported here, suggesting low-genetic diversity of the plague during the sixth century in rural southern Germany.


Assuntos
DNA Antigo/análise , Peste/microbiologia , Yersinia pestis/genética , Sequência de Bases , DNA Bacteriano/genética , Variação Genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Pandemias , Virulência/genética
11.
Appl Environ Microbiol ; 83(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986727

RESUMO

During routine screening for Burkholderia pseudomallei from water wells in northern Australia in areas where it is endemic, Gram-negative bacteria (strains MSMB43T, MSMB121, and MSMB122) with a similar morphology and biochemical pattern to B. pseudomallei and B. thailandensis were coisolated with B. pseudomallei on Ashdown's selective agar. To determine the exact taxonomic position of these strains and to distinguish them from B. pseudomallei and B. thailandensis, they were subjected to a series of phenotypic and molecular analyses. Biochemical and fatty acid methyl ester analysis was unable to distinguish B. humptydooensis sp. nov. from closely related species. With matrix-assisted laser desorption ionization-time of flight analysis, all isolates grouped together in a cluster separate from other Burkholderia spp. 16S rRNA and recA sequence analyses demonstrated phylogenetic placement for B. humptydooensis sp. nov. in a novel clade within the B. pseudomallei group. Multilocus sequence typing (MLST) analysis of the three isolates in comparison with MLST data from 3,340 B. pseudomallei strains and related taxa revealed a new sequence type (ST318). Genome-to-genome distance calculations and the average nucleotide identity of all isolates to both B. thailandensis and B. pseudomallei, based on whole-genome sequences, also confirmed B. humptydooensis sp. nov. as a novel Burkholderia species within the B. pseudomallei complex. Molecular analyses clearly demonstrated that strains MSMB43T, MSMB121, and MSMB122 belong to a novel Burkholderia species for which the name Burkholderia humptydooensis sp. nov. is proposed, with the type strain MSMB43T (American Type Culture Collection BAA-2767; Belgian Co-ordinated Collections of Microorganisms LMG 29471; DDBJ accession numbers CP013380 to CP013382).IMPORTANCEBurkholderia pseudomallei is a soil-dwelling bacterium and the causative agent of melioidosis. The genus Burkholderia consists of a diverse group of species, with the closest relatives of B. pseudomallei referred to as the B. pseudomallei complex. A proposed novel species, B. humptydooensis sp. nov., was isolated from a bore water sample from the Northern Territory in Australia. B. humptydooensis sp. nov. is phylogenetically distinct from B. pseudomallei and other members of the B. pseudomallei complex, making it the fifth member of this important group of bacteria.


Assuntos
Burkholderia pseudomallei/classificação , Burkholderia/classificação , Burkholderia/genética , Burkholderia/fisiologia , Filogenia , Animais , Austrália , Técnicas de Tipagem Bacteriana/métodos , Burkholderia/isolamento & purificação , Infecções por Burkholderia/microbiologia , DNA Bacteriano/genética , Modelos Animais de Doenças , Ácidos Graxos/análise , Genes Bacterianos/genética , Genoma Bacteriano , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus/métodos , Northern Territory , Fenótipo , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA , Especificidade da Espécie , Virulência , Microbiologia da Água
12.
Antonie Van Leeuwenhoek ; 110(2): 221-234, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27785661

RESUMO

A pleomorphic Gram-negative, motile coccobacillus was isolated from the gills of a wild-caught bluespotted ribbontail ray after its sudden death during quarantine. Strain 141012304 was observed to grow aerobically, to be clearly positive for cytochrome oxidase, catalase, urease and was initially identified as "Brucella melitensis" or "Ochrobactrum anthropi" by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and VITEK2-compact®, respectively. Affiliation to the genus Brucella was confirmed by bcsp31 and IS711 PCR as well as by Brucella species-specific multiplex PCR, therein displaying a characteristic banding pattern recently described for Brucella strains obtained from amphibian hosts. Likewise, based on recA sequencing, strain 141012304 was found to form a separate lineage, within the so called 'atypical' Brucella, consisting of genetically more distantly related strains. The closest similarity was detected to brucellae, which have recently been isolated from edible bull frogs. Subsequent next generation genome sequencing and phylogenetic analysis confirmed that the ray strain represents a novel Brucella lineage within the atypical group of Brucella and in vicinity to Brucella inopinata and Brucella strain BO2, both isolated from human patients. This is the first report of a natural Brucella infection in a saltwater fish extending the host range of this medically important genus.


Assuntos
Brucella/classificação , Brucella/genética , Rajidae/microbiologia , Animais , Organismos Aquáticos/microbiologia , Brucella/isolamento & purificação , DNA Bacteriano/genética , Filogenia , Especificidade da Espécie
13.
Proc Natl Acad Sci U S A ; 111(18): 6768-73, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753568

RESUMO

The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.


Assuntos
Evolução Molecular , Virulência/genética , Yersinia/genética , Yersinia/patogenicidade , Genoma Bacteriano , Humanos , Redes e Vias Metabólicas/genética , Filogenia , Especificidade da Espécie , Yersinia/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo , Yersinia enterocolitica/patogenicidade
14.
Int J Syst Evol Microbiol ; 66(5): 2090-2098, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26928956

RESUMO

Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).


Assuntos
Brucella/classificação , Raposas/microbiologia , Linfonodos/microbiologia , Filogenia , Animais , Áustria , Técnicas de Tipagem Bacteriana , Tipagem de Bacteriófagos , Composição de Bases , Brucella/genética , Brucella/isolamento & purificação , DNA Bacteriano/genética , Análise de Sequência de DNA
15.
J Biol Chem ; 289(35): 24452-62, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25037221

RESUMO

Amine oxidase copper-containing 1 (AOC1; formerly known as amiloride-binding protein 1) is a secreted glycoprotein that catalyzes the degradation of putrescine and histamine. Polyamines and their diamine precursor putrescine are ubiquitous to all organisms and fulfill pivotal functions in cell growth and proliferation. Despite the importance of AOC1 in regulating polyamine breakdown, very little is known about the molecular mechanisms that control its expression. We report here that the Wilms tumor protein, WT1, which is necessary for normal kidney development, activates transcription of the AOC1 gene. Expression of a firefly luciferase reporter under control of the proximal AOC1 promoter was significantly enhanced by co-transfection of a WT1 expression construct. Binding of WT1 protein to a cis-regulatory element in the AOC1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Antisense inhibition of WT1 protein translation strongly reduced Aoc1 transcripts in cultured murine embryonic kidneys and gonads. Aoc1 mRNA levels correlated with WT1 protein in several cell lines. Double immunofluorescent staining revealed a co-expression of WT1 and AOC1 proteins in the developing genitourinary system of mice and rats. Strikingly, induced changes in polyamine homeostasis affected branching morphogenesis of cultured murine embryonic kidneys in a developmental stage-specific manner. These findings suggest that WT1-dependent control of polyamine breakdown, which is mediated by changes in AOC1 expression, has a role in kidney organogenesis.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Proteínas WT1/metabolismo , Amina Oxidase (contendo Cobre)/genética , Animais , Sequência de Bases , Primers do DNA , Técnicas de Silenciamento de Genes , Gônadas/embriologia , Gônadas/metabolismo , Células HEK293 , Humanos , Rim/embriologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas WT1/genética
16.
J Biol Chem ; 289(39): 26973-26988, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25124043

RESUMO

The basic helix-loop-helix transcription factor hASH1, encoded by the ASCL1 gene, plays an important role in neurogenesis and tumor development. Recent findings indicate that local oxygen tension is a critical determinant for the progression of neuroblastomas. Here we investigated the molecular mechanisms underlying the oxygen-dependent expression of hASH1 in neuroblastoma cells. Exposure of human neuroblastoma-derived Kelly cells to 1% O2 significantly decreased ASCL1 mRNA and hASH1 protein levels. Using reporter gene assays, we show that the response of hASH1 to hypoxia is mediated mainly by post-transcriptional inhibition via the ASCL1 mRNA 5'- and 3'-UTRs, whereas additional inhibition of the ASCL1 promoter was observed under prolonged hypoxia. By RNA pulldown experiments followed by MALDI/TOF-MS analysis, we identified heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 and hnRNP-R as interactors binding directly to the ASCL1 mRNA 5'- and 3'-UTRs and influencing its expression. We further demonstrate that hnRNP-A2/B1 is a key positive regulator of ASCL1, findings that were also confirmed by analysis of a large compilation of gene expression data. Our data suggest that a prominent down-regulation of hnRNP-A2/B1 during hypoxia is associated with the post-transcriptional suppression of hASH1 synthesis. This novel post-transcriptional mechanism for regulating hASH1 levels will have important implications in neural cell fate development and disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/biossíntese , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Regiões Promotoras Genéticas , Coelhos , Ratos Wistar
17.
Emerg Infect Dis ; 21(1): 8-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25530466

RESUMO

Yersinia pestis, the causative agent of plague, is endemic to Madagascar, particularly to the central highlands. Although plague has not been previously reported in northern Madagascar, an outbreak of pneumonic plague occurred in this remote area in 2011. Over a 27-day period, 17 suspected, 2 presumptive, and 3 confirmed human cases were identified, and all 15 untreated 20 patients died. Molecular typing of Y. pestis isolated from 2 survivors and 5 Rattus rattus rat samples identified the Madagascar-specific 1.ORI3-k single-nucleotide polymorphism genotype and 4 clustered regularly interspaced short palindromic repeat patterns. This outbreak had a case-fatality rate of 100% for nontreated patients. The Y. pestis 1.ORI3-k single-nucleotide polymorphism genotype might cause larger epidemics. Multidrug-resistant strains and persistence of the pathogen in natural foci near human settlements pose severe risks to populations in plague-endemic regions and require outbreak response strategies.


Assuntos
Surtos de Doenças , Doenças Endêmicas , Peste/mortalidade , Adolescente , Animais , Sequência de Bases , Busca de Comunicante , Feminino , Genes Bacterianos , Humanos , Madagáscar/epidemiologia , Masculino , Tipagem Molecular , Polimorfismo de Nucleotídeo Único , Ratos , Yersinia pestis/genética , Yersinia pestis/isolamento & purificação
18.
Kidney Int ; 88(6): 1283-1292, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26200943

RESUMO

Reduced nephron number predisposes to hypertension and kidney disease. Interaction of the branching ureteric bud and surrounding mesenchymal cells determines nephron number. Since oxygen supply may be critical for intrauterine development, we tested whether hypoxia and hypoxia-inducible factor-1α (HIF-1α) influence nephrogenesis. We found that HIF-1α is required for branching of MDCK cells. In addition, culture of metanephric mouse kidneys with ureteric bud cell-specific stabilization or knockout of HIF-1α revealed a positive impact of HIF-1α on nephrogenesis. In contrast, widespread stabilization of HIF-1α in metanephric kidneys through hypoxia or HIF stabilizers impaired nephrogenesis, and pharmacological HIF inhibition enhanced nephrogenesis. Several lines of evidence suggest an inhibitory effect through the hypoxia response of mesenchymal cells. HIF-1α was expressed in mesenchymal cells during nephrogenesis. Expression of the anti-branching factors Bmp4 and Vegfa, secreted by mesenchymal cells, was increased upon HIF stabilization. The conditioned medium from hypoxic metanephric kidneys inhibited MDCK branching, which was partially rescued by Vegfa antibodies. Thus, the effect of HIF-1α on nephrogenesis appears context dependent. While HIF-1α in the ureteric bud is of importance for proper branching morphogenesis, the net effect of hypoxia-induced HIF activation in the embryonic kidney appears to be mesenchymal cell-dependent inhibition of ureter branching.

19.
PLoS Pathog ; 9(5): e1003349, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658525

RESUMO

Yersinia pestis, the etiologic agent of the disease plague, has been implicated in three historical pandemics. These include the third pandemic of the 19(th) and 20(th) centuries, during which plague was spread around the world, and the second pandemic of the 14(th)-17(th) centuries, which included the infamous epidemic known as the Black Death. Previous studies have confirmed that Y. pestis caused these two more recent pandemics. However, a highly spirited debate still continues as to whether Y. pestis caused the so-called Justinianic Plague of the 6(th)-8(th) centuries AD. By analyzing ancient DNA in two independent ancient DNA laboratories, we confirmed unambiguously the presence of Y. pestis DNA in human skeletal remains from an Early Medieval cemetery. In addition, we narrowed the phylogenetic position of the responsible strain down to major branch 0 on the Y. pestis phylogeny, specifically between nodes N03 and N05. Our findings confirm that Y. pestis was responsible for the Justinianic Plague, which should end the controversy regarding the etiology of this pandemic. The first genotype of a Y. pestis strain that caused the Late Antique plague provides important information about the history of the plague bacillus and suggests that the first pandemic also originated in Asia, similar to the other two plague pandemics.


Assuntos
Osso e Ossos/microbiologia , DNA Bacteriano/genética , Pandemias/história , Filogenia , Peste , Yersinia pestis/genética , Sequência de Bases , Feminino , Genótipo , História do Século XV , História do Século XVI , História do Século XVII , História do Século XIX , História do Século XX , História Medieval , Humanos , Masculino , Dados de Sequência Molecular , Peste/epidemiologia , Peste/etiologia , Peste/genética , Peste/história , Peste/microbiologia
20.
J Biol Chem ; 288(26): 18811-24, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23661704

RESUMO

ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs) is a secreted mammalian metalloproteinase with unknown function. We report here that murine Adamts16 is co-expressed with the Wilms tumor protein, Wt1, in the developing glomeruli of embryonic kidneys. Adamts16 mRNA levels were significantly reduced upon transfection of embryonic murine kidney explants with Wt1 antisense vivo-morpholinos. Antisense knockdown of Adamts16 inhibited branching morphogenesis in kidney organ cultures. Adamts16 was detected by in situ mRNA hybridization and/or immunohistochemistry also in embryonic gonads and in spermatids and granulosa cells of adult testes and ovaries, respectively. Silencing of Wt1 by transfection with antisense vivo-morpholinos significantly increased Adamts16 mRNA in cultured embryonic XY gonads (11.5 and 12.5 days postconception), and reduced Adamts16 transcripts in XX gonads (12.5 and 13.5 days postconception). Three predicted Wt1 consensus motifs could be identified in the promoter and the 5'-untranslated region of the murine Adamts16 gene. Binding of Wt1 protein to these elements was verified by EMSA and ChIP. A firefly luciferase reporter gene under control of the Adamts16 promoter was activated ∼8-fold by transient co-transfection of human granulosa cells with a Wt1 expression construct. Gradual shortening of the 5'-flanking sequence successively reduced and eventually abrogated Adamts16 promoter activation by Wt1. These findings demonstrate that Wt1 differentially regulates the Adamts16 gene in XX and XY embryonic gonads. It is suggested that Adamts16 acts immediately downstream of Wt1 during murine urogenital development. We propose that Adamts16 is involved in branching morphogenesis of the kidneys in mice.


Assuntos
Proteínas ADAM/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Urogenital/embriologia , Proteínas WT1/metabolismo , Proteínas ADAM/metabolismo , Proteínas ADAMTS , Motivos de Aminoácidos , Animais , Feminino , Inativação Gênica , Células da Granulosa/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Células de Sertoli/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA