RESUMO
Broadly neutralizing antibodies (bNAbs) have remarkable breadth and potency against most HIV-1 subtypes and are able to prevent HIV-1 infection in animal models. However, bNAbs are extremely difficult to induce by vaccination. Defining the developmental pathways towards neutralization breadth can assist in the design of strategies to elicit protective bNAb responses by vaccination. Here, HIV-1 envelope glycoproteins (Env)-specific IgG+ B cells were isolated at various time points post infection from an HIV-1 infected elite neutralizer to obtain monoclonal antibodies (mAbs). Multiple antibody lineages were isolated targeting distinct epitopes on Env, including the gp120-gp41 interface, CD4-binding site, silent face and V3 region. The mAbs each neutralized a diverse set of HIV-1 strains from different clades indicating that the patient's remarkable serum breadth and potency might have been the result of a polyclonal mixture rather than a single bNAb lineage. High-resolution cryo-electron microscopy structures of the neutralizing mAbs (NAbs) in complex with an Env trimer generated from the same individual revealed that the NAbs used multiple strategies to neutralize the virus; blocking the receptor binding site, binding to HIV-1 Env N-linked glycans, and disassembly of the trimer. These results show that diverse NAbs can complement each other to achieve a broad and potent neutralizing serum response in HIV-1 infected individuals. Hence, the induction of combinations of moderately broad NAbs might be a viable vaccine strategy to protect against a wide range of circulating HIV-1 viruses.
Assuntos
Soropositividade para HIV , HIV-1 , Animais , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Anticorpos Monoclonais , Proteína gp120 do Envelope de HIVRESUMO
The human immunodeficiency virus type 1 (HIV-1) trimeric envelope glycoprotein (Env) is heavily glycosylated, creating a dense glycan shield that protects the underlying peptidic surface from antibody recognition. The absence of conserved glycans, due to missing potential N-linked glycosylation sites (PNGS), can result in strain-specific, autologous neutralizing antibody (NAb) responses. Here, we sought to gain a deeper understanding of the autologous neutralization by introducing holes in the otherwise dense glycan shields of the AMC011 and AMC016 SOSIP trimers. Specifically, when we knocked out the N130 and N289 glycans, which are absent from the well-characterized B41 SOSIP trimer, we observed stronger autologous NAb responses. We also analyzed the highly variable NAb responses induced in rabbits by diverse SOSIP trimers from subtypes A, B, and C. Statistical analysis, using linear regression, revealed that the cumulative area exposed on a trimer by glycan holes correlates with the magnitude of the autologous NAb response. IMPORTANCE Forty years after the first description of HIV-1, the search for a protective vaccine is still ongoing. The sole target for antibodies that can neutralize the virus are the trimeric envelope glycoproteins (Envs) located on the viral surface. The glycoprotein surface is covered with glycans that shield off the underlying protein components from recognition by the immune system. However, the Env trimers of some viral strains have holes in the glycan shield. Immunized animals developed antibodies against such glycan holes. These antibodies are generally strain specific. Here, we sought to gain a deeper understanding of what drives these specific immune responses. First, we show that strain-specific neutralizing antibody responses can be increased by creating artificial holes in the glycan shield. Second, when studying a diverse set of Env trimers with different characteristics, we found that the surface area of the glycan holes contributes prominently to the induction of strain-specific neutralizing antibodies.
Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Polissacarídeos/metabolismo , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/imunologia , Aminoácidos/química , Aminoácidos/imunologia , Aminoácidos/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Antígenos Virais/imunologia , Glicosilação , Anticorpos Anti-HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Imunização , Modelos Moleculares , Conformação Proteica , Multimerização Proteica/imunologia , Coelhos , Deleção de Sequência , Relação Estrutura-Atividade , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers.IMPORTANCE Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.
Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/química , Antígenos Virais/química , Microscopia Crioeletrônica , Epitopos/imunologia , Glicoproteínas , Infecções por HIV/virologia , Imunização , Coelhos , Proteínas Recombinantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
In HIV-1 vaccine research, native-like, soluble envelope glycoprotein SOSIP trimers are widely used for immunizing animals. The epitopes of autologous neutralizing antibodies (NAbs) induced by the BG505 and B41 SOSIP trimers in rabbits and macaques have been mapped to a few holes in the glycan shields that cover most of the protein surfaces. For BG505 trimers, the dominant autologous NAb epitope in rabbits involves residues that line a cavity caused by the absence of a glycan at residue 241. Here, we blocked this epitope in BG505 SOSIPv4.1 trimer immunogens by knocking in an N-linked glycan at residue 241. We then opened holes elsewhere on the trimer by knocking out single N-linked glycans at residues 197, 234, 276, 332, and 355 and found that NAb responses induced by the 241-glycan-bearing BG505 trimers were frequently redirected to the newly opened sites. The strongest evidence for redirection of the NAb response to neoepitopes, through the opening and closing of glycan holes, was obtained from trimer immunogen groups with the highest occupancy of the N241 site. We also attempted to knock in the N289-glycan to block the sole autologous NAb epitope on the B41 SOSIP.v4.1 trimer. Although a retrospective analysis showed that the new N289-glycan site was substantially underoccupied, we found some evidence for redirection of the NAb response to a neoepitope when this site was knocked in and the N356-glycan site knocked out. In neither study, however, was redirection associated with increased neutralization of heterologous tier 2 viruses.IMPORTANCE Engineered SOSIP trimers mimic envelope-glycoprotein spikes, which stud the surface of HIV-1 particles and mediate viral entry into cells. When used for immunizing test animals, they elicit antibodies that neutralize resistant sequence-matched HIV-1 isolates. These neutralizing antibodies recognize epitopes in holes in the glycan shield that covers the trimer. Here, we added glycans to block the most immunogenic neutralization epitopes on BG505 and B41 SOSIP trimers. In addition, we removed selected other glycans to open new holes that might expose new immunogenic epitopes. We immunized rabbits with the various glycan-modified trimers and then dissected the specificities of the antibody responses. Thus, in principle, the antibody response might be diverted from one site to a more cross-reactive one, which would help in the induction of broadly neutralizing antibodies by HIV-1 vaccines based on envelope glycoproteins.
Assuntos
Anticorpos Neutralizantes/imunologia , Glicoproteínas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Formação de Anticorpos , Antígenos Virais/imunologia , Epitopos/imunologia , Feminino , Glicoproteínas/metabolismo , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , HIV-1/metabolismo , Imunização , Polissacarídeos/metabolismo , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismoRESUMO
To provide protective immunity against circulating primary HIV-1 strains, a vaccine most likely has to induce broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) spike. Recombinant Env trimers such as the prototype BG505 SOSIP.664 that closely mimic the native Env spike can induce autologous neutralizing antibodies (NAbs) against relatively resistant (tier 2) primary viruses. Ideally, Env immunogens should present broadly neutralizing antibody epitopes but limit the presentation of immunodominant non-NAb epitopes that might induce off-target and potentially interfering responses. The V3 loop in gp120 is such a non-NAb epitope that can effectively elicit non-NAbs when animals are immunized with SOSIP.664 trimers. V3 immunogenicity can be diminished, but not abolished, by reducing the conformational flexibility of trimers via targeted sequence changes, including an A316W substitution in V3, that create the SOSIP.v4.1 and SOSIP.v5.2 variants. Here, we further modified these trimer designs by introducing leucine residues at V3 positions 306 and 308 to create hydrophobic interactions with the tryptophan residue at position 316 and with other topologically proximal sites in the V1V2 domain. Together, these modifications further stabilized the resulting SOSIP.v5.2 S306L/R308L trimers in the prefusion state in which V3 is sequestered. When we tested these trimers as immunogens in rabbits, the induction of V3 non-NAbs was significantly reduced compared with the SOSIP.v5.2 trimers and even more so compared with the SOSIP.664 prototype, without affecting the autologous NAb response. Hence, these additional trimer sequence modifications may be beneficial for immunization strategies that seek to minimize off-target non-NAb responses.
Assuntos
Anticorpos Neutralizantes/química , Epitopos/química , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/química , Multimerização Proteica , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estabilidade ProteicaRESUMO
A major goal of current HIV-1 vaccine design efforts is to induce broadly neutralizing antibodies (bNAbs). The VH1-2-derived bNAb IOMA directed to the CD4-binding site of the HIV-1 envelope glycoprotein is of interest because, unlike the better-known VH1-2-derived VRC01-class bNAbs, it does not require a rare short light chain complementarity-determining region 3 (CDRL3). Here, we describe three IOMA-class NAbs, ACS101-103, with up to 37% breadth, that share many characteristics with IOMA, including an average-length CDRL3. Cryo-electron microscopy revealed that ACS101 shares interactions with those observed with other VH1-2 and VH1-46-class bNAbs, but exhibits a unique binding mode to residues in loop D. Analysis of longitudinal sequences from the patient suggests that a transmitter/founder-virus lacking the N276 glycan might have initiated the development of these NAbs. Together these data strengthen the rationale for germline-targeting vaccination strategies to induce IOMA-class bNAbs and provide a wealth of sequence and structural information to support such strategies.
Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Antígenos Virais , Sítios de Ligação , Anticorpos Amplamente Neutralizantes , Antígenos CD4/imunologia , Regiões Determinantes de Complementaridade , Microscopia Crioeletrônica , Glicoproteínas , Anticorpos Anti-HIV , HumanosRESUMO
There is an urgent need for the development of potent vaccination regimens that are able to induce specific T and B cell responses against human immunodeficiency virus type 1 (HIV-1). Here, we describe the generation and characterization of a fusion antigen comprised of the HIV-1 envelope GP120 glycoprotein from clade C (GP120C) fused at its C-terminus, with the modified vaccinia virus (VACV) 14K protein (A27L gene) (termed GP120C14K). The design is directed toward improving the immunogenicity of the GP120C protein through its oligomerization facilitated by the fused VACV 14K protein that results in hexamer-like structures. Two different immunogens were generated: a recombinant GP120C14K fusion protein (purified from a stable CHO-K1 cell line) and a recombinant modified vaccinia virus Ankara (MVA) poxvirus vector expressing the GP120C14K fusion protein (termed MVA-GP120C14K). The GP120C14K fusion protein is recognized by broadly neutralizing antibodies (bNAbs) against HIV-1. In a murine model, a heterologous prime/boost immunization regimen with MVA-GP120C14K prime followed by adjuvanted GP120C14K protein boost generated stronger and polyfunctional HIV-1 Env-specific CD8 T cell responses when compared with the delivery of the monomeric GP120C form. Furthermore, the immunization protocol MVA-GP120C14K/GP120C14K elicited higher HIV-1 Env-specific T follicular helper cells, germinal center B cells and antibody responses than monomeric GP120. In addition, a similar MVA-GP120C14K prime/GP120C14K protein boost regimen performed in rabbits triggered high HIV-1-Env-specific IgG binding antibody titers that were capable of neutralizing HIV-1 pseudoviruses. The extent of HIV-1 neutralization was comparable to that elicited by the current standard GP140 SOSIP trimers from clades B and C when immunized as MVA-SOSIP prime/SOSIP protein boost regimen. Overall, the novel fusion antigen and the corresponding immunization scheme provided in this report can therefore be considered as potential vaccine strategies against HIV-1.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/biossíntese , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Vaccinia virus/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Células CHO , Cricetulus , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes de Fusão/químicaRESUMO
The development of native-like HIV-1 envelope (Env) trimer antigens has enabled the induction of neutralizing antibody (NAb) responses against neutralization-resistant HIV-1 strains in animal models. However, NAb responses are relatively weak and narrow in specificity. Displaying antigens in a multivalent fashion on nanoparticles (NPs) is an established strategy to increase their immunogenicity. Here we present the design and characterization of two-component protein NPs displaying 20 stabilized SOSIP trimers from various HIV-1 strains. The two-component nature permits the incorporation of exclusively well-folded, native-like Env trimers into NPs that self-assemble in vitro with high efficiency. Immunization studies show that the NPs are particularly efficacious as priming immunogens, improve the quality of the Ab response over a conventional one-component nanoparticle system, and are most effective when SOSIP trimers with an apex-proximate neutralizing epitope are displayed. Their ability to enhance and shape the immunogenicity of SOSIP trimers make these NPs a promising immunogen platform.
Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Antígenos Virais/biossíntese , Linhagem Celular , Epitopos/imunologia , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Nanopartículas , Multimerização Proteica/imunologia , Estrutura Terciária de Proteína , CoelhosRESUMO
The induction by vaccination of broadly neutralizing antibodies (bNAbs) capable of neutralizing various HIV-1 viral strains is challenging, but understanding how a subset of HIV-infected individuals develops bNAbs may guide immunization strategies. Here, we describe the isolation and characterization of the bNAb ACS202 from an elite neutralizer that recognizes a new, trimer-specific and cleavage-dependent epitope at the gp120-gp41 interface of the envelope glycoprotein (Env), involving the glycan N88 and the gp41 fusion peptide. In addition, an Env trimer, AMC011 SOSIP.v4.2, based on early virus isolates from the same elite neutralizer, was constructed, and its structure by cryo-electron microscopy at 6.2â Å resolution reveals a closed, pre-fusion conformation similar to that of the BG505 SOSIP.664 trimer. The availability of a native-like Env trimer and a bNAb from the same elite neutralizer provides the opportunity to design vaccination strategies aimed at generating similar bNAbs against a key functional site on HIV-1.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Sobreviventes de Longo Prazo ao HIV , Anticorpos Neutralizantes/isolamento & purificação , Microscopia Crioeletrônica , Epitopos de Linfócito B/imunologia , Anticorpos Anti-HIV/isolamento & purificação , Proteína gp160 do Envelope de HIV/imunologia , Proteína gp160 do Envelope de HIV/ultraestrutura , HumanosRESUMO
BACKGROUND: Natural control of HIV infection is associated with CD8 T-cell responses to Gag-encoded antigens of the HIV core and carriage of 'protective' human leukocyte antigen (HLA)-B alleles, but some HIV controllers do not possess these attributes. As slower HIV disease progression is associated with high levels of antibodies to HIV Gag proteins, we have examined antibodies to HIV proteins in controllers with and without 'protective' HLA-B alleles. METHODS: Plasma from 32 HIV controllers and 21 noncontrollers was examined for immunoglobulin G1 (IgG1) and IgG2 antibodies to HIV proteins in virus lysates by western blot assay and to recombinant (r) p55 and gp140 by ELISA. Natural killer (NK) cell-activating antibodies and FcγRIIa-binding immune complexes were also assessed. RESULTS: Plasma levels of IgG1 antibodies to HIV Gag (p18, p24, rp55) and Pol-encoded (p32, p51, p66) proteins were higher in HIV controllers. In contrast, IgG1 antibodies to Env proteins were less discriminatory, with only antigp120 levels being higher in controllers. High-level IgG2 antibodies to any Gag protein were most common in HIV controllers not carrying a 'protective' HLA-B allele, particularly HLA-B*57 (Pâ=â0.016). HIV controllers without 'protective' HLA-B alleles also had higher plasma levels of IgG1 antip32 (Pâ=â0.04). NK cell-activating antibodies to gp140 Env protein were higher in elite controllers but did not differentiate HIV controllers with or without 'protective' HLA-B alleles. IgG1 was increased in FcγRIIa-binding immune complexes from noncontrollers. CONCLUSION: We hypothesize that isotype-switched (IgG2+) antibodies to HIV Gag proteins and possibly IgG1 antip32 may provide alternative or additional immune control mechanisms to HLA-restricted CD8 T-cell responses in HIV controllers.