Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(4): 992-1004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216727

RESUMO

Neuroinflammation is a hallmark of Alzheimer's disease (AD) and both positive and negative associations of individual inflammation-related markers with brain structure and cognitive function have been described. We aimed to identify inflammatory signatures of CSF immune-related markers that relate to changes of brain structure and cognition across the clinical spectrum ranging from normal aging to AD. A panel of 16 inflammatory markers, Aß42/40 and p-tau181 were measured in CSF at baseline in the DZNE DELCODE cohort (n = 295); a longitudinal observational study focusing on at-risk stages of AD. Volumetric maps of gray and white matter (GM/WM; n = 261) and white matter hyperintensities (WMHs, n = 249) were derived from baseline MRIs. Cognitive decline (n = 204) and the rate of change in GM volume was measured in subjects with at least 3 visits (n = 175). A principal component analysis on the CSF markers revealed four inflammatory components (PCs). Of these, the first component PC1 (highly loading on sTyro3, sAXL, sTREM2, YKL-40, and C1q) was associated with older age and higher p-tau levels, but with less pathological Aß when controlling for p-tau. PC2 (highly loading on CRP, IL-18, complement factor F/H and C4) was related to male gender, higher body mass index and greater vascular risk. PC1 levels, adjusted for AD markers, were related to higher GM and WM volumes, less WMHs, better baseline memory, and to slower atrophy rates in AD-related areas and less cognitive decline. In contrast, PC2 related to less GM and WM volumes and worse memory at baseline. Similar inflammatory signatures and associations were identified in the independent F.ACE cohort. Our data suggest that there are beneficial and detrimental signatures of inflammatory CSF biomarkers. While higher levels of TAM receptors (sTyro/sAXL) or sTREM2 might reflect a protective glia response to degeneration related to phagocytic clearance, other markers might rather reflect proinflammatory states that have detrimental impact on brain integrity.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Encéfalo , Cognição , Disfunção Cognitiva , Inflamação , Imageamento por Ressonância Magnética , Substância Branca , Proteínas tau , Humanos , Masculino , Feminino , Biomarcadores/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Pessoa de Meia-Idade , Encéfalo/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Cognição/fisiologia , Inflamação/líquido cefalorraquidiano , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/líquido cefalorraquidiano , Substância Branca/patologia , Proteínas tau/líquido cefalorraquidiano , Estudos Longitudinais , Substância Cinzenta/patologia , Estudos de Coortes
2.
Brain ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743817

RESUMO

Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional magnetic resonance imaging (fMRI) activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive aging. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analyzed subsequent memory fMRI data from individuals with SCD, MCI, and AD dementia as well as healthy controls (HC) and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-center DELCODE study (N = 468). Based on the individual participants' whole-brain fMRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity, and ApoE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to HC, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aß-positive and Aß-negative individuals in SCD and AD-rel, and between ApoE ε4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.

3.
Brain ; 147(7): 2400-2413, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38654513

RESUMO

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological ageing. It is not known whether divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± standard deviation, age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (n = 342), mild cognitive impairment (n = 118) or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid Alzheimer's disease biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5) as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test whether baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and mild cognitive impairment conversion rates of cognitively unimpaired participants and those with subjective cognitive decline. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy initially affected the medial temporal lobes, followed by further temporal regions and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological Alzheimer's disease biomarker levels, APOE ε4 carriership and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe, with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive Alzheimer's disease biomarkers and was associated with more generalized cognitive impairment. Limbic-predominant atrophy, in all participants and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of mild cognitive impairment conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, at both the subject and the group level, was excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for Alzheimer's disease in applied settings. The implementation of atrophy subtype- and stage-specific end points might increase the statistical power of pharmacological trials targeting early Alzheimer's disease.


Assuntos
Doença de Alzheimer , Atrofia , Disfunção Cognitiva , Progressão da Doença , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Atrofia/patologia , Idoso , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/patologia , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Testes Neuropsicológicos , Estudos de Coortes , Idoso de 80 Anos ou mais , Memória Episódica , Transtornos da Memória/patologia
4.
Brain ; 146(5): 2075-2088, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36288546

RESUMO

Previous studies have shown that the cholinergic nucleus basalis of Meynert and its white matter projections are affected in Alzheimer's disease dementia and mild cognitive impairment. However, it is still unknown whether these alterations can be found in individuals with subjective cognitive decline, and whether they are more pronounced than changes found in conventional brain volumetric measurements. To address these questions, we investigated microstructural alterations of two major cholinergic pathways in individuals along the Alzheimer's disease continuum using an in vivo model of the human cholinergic system based on neuroimaging. We included 402 participants (52 Alzheimer's disease, 66 mild cognitive impairment, 172 subjective cognitive decline and 112 healthy controls) from the Deutsches Zentrum für Neurodegenerative Erkrankungen Longitudinal Cognitive Impairment and Dementia Study. We modelled the cholinergic white matter pathways with an enhanced diffusion neuroimaging pipeline that included probabilistic fibre-tracking methods and prior anatomical knowledge. The integrity of the cholinergic white matter pathways was compared between stages of the Alzheimer's disease continuum, in the whole cohort and in a CSF amyloid-beta stratified subsample. The discriminative power of the integrity of the pathways was compared to the conventional volumetric measures of hippocampus and nucleus basalis of Meynert, using a receiver operating characteristics analysis. A multivariate model was used to investigate the role of these pathways in relation to cognitive performance. We found that the integrity of the cholinergic white matter pathways was significantly reduced in all stages of the Alzheimer's disease continuum, including individuals with subjective cognitive decline. The differences involved posterior cholinergic white matter in the subjective cognitive decline stage and extended to anterior frontal white matter in mild cognitive impairment and Alzheimer's disease dementia stages. Both cholinergic pathways and conventional volumetric measures showed higher predictive power in the more advanced stages of the disease, i.e. mild cognitive impairment and Alzheimer's disease dementia. In contrast, the integrity of cholinergic pathways was more informative in distinguishing subjective cognitive decline from healthy controls, as compared with the volumetric measures. The multivariate model revealed a moderate contribution of the cholinergic white matter pathways but not of volumetric measures towards memory tests in the subjective cognitive decline and mild cognitive impairment stages. In conclusion, we demonstrated that cholinergic white matter pathways are altered already in subjective cognitive decline individuals, preceding the more widespread alterations found in mild cognitive impairment and Alzheimer's disease. The integrity of the cholinergic pathways identified the early stages of Alzheimer's disease better than conventional volumetric measures such as hippocampal volume or volume of cholinergic nucleus basalis of Meynert.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Doença de Alzheimer/psicologia , Encéfalo , Disfunção Cognitiva/psicologia , Colinérgicos
5.
Hum Brain Mapp ; 44(9): 3586-3609, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37051727

RESUMO

The default mode network (DMN) typically exhibits deactivations during demanding tasks compared to periods of relative rest. In functional magnetic resonance imaging (fMRI) studies of episodic memory encoding, increased activity in DMN regions even predicts later forgetting in young healthy adults. This association is attenuated in older adults and, in some instances, increased DMN activity even predicts remembering rather than forgetting. It is yet unclear whether this phenomenon is due to a compensatory mechanism, such as self-referential or schema-dependent encoding, or whether it reflects overall reduced DMN activity modulation in older age. We approached this question by systematically comparing DMN activity during successful encoding and tonic, task-independent, DMN activity at rest in a sample of 106 young (18-35 years) and 111 older (60-80 years) healthy participants. Using voxel-wise multimodal analyses, we assessed the age-dependent relationship between DMN resting-state amplitude (mean percent amplitude of fluctuation, mPerAF) and DMN fMRI signals related to successful memory encoding, as well as their modulation by age-related hippocampal volume loss, while controlling for regional grey matter volume. Older adults showed lower resting-state DMN amplitudes and lower task-related deactivations. However, a negative relationship between resting-state mPerAF and subsequent memory effect within the precuneus was observed only in young, but not older adults. Hippocampal volumes showed no relationship with the DMN subsequent memory effect or mPerAF. Lastly, older adults with higher mPerAF in the DMN at rest tend to show higher memory performance, pointing towards the importance of a maintained ability to modulate DMN activity in old age.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Idoso , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão , Cognição , Rememoração Mental , Imageamento por Ressonância Magnética , Rede Nervosa
6.
Hum Brain Mapp ; 44(8): 3283-3301, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972323

RESUMO

Memory-related functional magnetic resonance imaging (fMRI) activations show age-related differences across multiple brain regions that can be captured in summary statistics like single-value scores. Recently, we described two single-value scores reflecting deviations from prototypical whole-brain fMRI activity of young adults during novelty processing and successful encoding. Here, we investigate the brain-behavior associations of these scores with age-related neurocognitive changes in 153 healthy middle-aged and older adults. All scores were associated with episodic recall performance. The memory network scores, but not the novelty network scores, additionally correlated with medial temporal gray matter and other neuropsychological measures including flexibility. Our results thus suggest that novelty-network-based fMRI scores show high brain-behavior associations with episodic memory and that encoding-network-based fMRI scores additionally capture individual differences in other aging-related functions. More generally, our results suggest that single-value scores of memory-related fMRI provide a comprehensive measure of individual differences in network dysfunction that may contribute to age-related cognitive decline.


Assuntos
Envelhecimento , Memória Episódica , Pessoa de Meia-Idade , Adulto Jovem , Humanos , Idoso , Envelhecimento/psicologia , Encéfalo/diagnóstico por imagem , Rememoração Mental , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Testes Neuropsicológicos
7.
J Neural Transm (Vienna) ; 130(8): 989-1002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37115329

RESUMO

Human cognitive abilities, and particularly hippocampus-dependent memory performance typically decline with increasing age. Immunosenescence, the age-related disintegration of the immune system, is increasingly coming into the focus of research as a considerable factor contributing to cognitive decline. In the present study, we investigated potential associations between plasma levels of pro- and anti-inflammatory cytokines and learning and memory performance as well as hippocampal anatomy in young and older adults. Plasma concentrations of the inflammation marker CRP as well as the pro-inflammatory cytokines IL-6 and TNF-α and the anti-inflammatory cytokine TGF-ß1 were measured in 142 healthy adults (57 young, 24.47 ± 4.48 years; 85 older, 63.66 ± 7.32 years) who performed tests of explicit memory (Verbal Learning and Memory Test, VLMT; Wechsler Memory Scale, Logical Memory, WMS) with an additional delayed recall test after 24 h. Hippocampal volumetry and hippocampal subfield segmentation were performed using FreeSurfer, based on T1-weighted and high-resolution T2-weighted MR images. When investigating the relationship between memory performance, hippocampal structure, and plasma cytokine levels, we found that TGF-ß1 concentrations were positively correlated with the volumes of the hippocampal CA4-dentate gyrus region in older adults. These volumes were in turn positively associated with better performance in the WMS, particularly in the delayed memory test. Our results support the notion that endogenous anti-inflammatory mechanisms may act as protective factors in neurocognitive aging.


Assuntos
Citocinas , Fator de Crescimento Transformador beta , Humanos , Idoso , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Hipocampo/diagnóstico por imagem , Cognição , Anti-Inflamatórios
8.
Int J Geriatr Psychiatry ; 38(10): e6007, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37800601

RESUMO

BACKGROUND: Alzheimer's disease (AD) is often preceded by stages of cognitive impairment, namely subjective cognitive decline (SCD) and mild cognitive impairment (MCI). While cerebrospinal fluid (CSF) biomarkers are established predictors of AD, other non-invasive candidate predictors include personality traits, anxiety, and depression, among others. These predictors offer non-invasive assessment and exhibit changes during AD development and preclinical stages. METHODS: In a cross-sectional design, we comparatively evaluated the predictive value of personality traits (Big Five), geriatric anxiety and depression scores, resting-state functional magnetic resonance imaging activity of the default mode network, apoliprotein E (ApoE) genotype, and CSF biomarkers (tTau, pTau181, Aß42/40 ratio) in a multi-class support vector machine classification. Participants included 189 healthy controls (HC), 338 individuals with SCD, 132 with amnestic MCI, and 74 with mild AD from the multicenter DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE). RESULTS: Mean predictive accuracy across all participant groups was highest when utilizing a combination of personality, depression, and anxiety scores. HC were best predicted by a feature set comprised of depression and anxiety scores and participants with AD were best predicted by a feature set containing CSF biomarkers. Classification of participants with SCD or aMCI was near chance level for all assessed feature sets. CONCLUSION: Our results demonstrate predictive value of personality trait and state scores for AD. Importantly, CSF biomarkers, personality, depression, anxiety, and ApoE genotype show complementary value for classification of AD and its at-risk stages.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Ansiedade , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/psicologia , Estudos Transversais , Depressão , Aprendizado de Máquina , Personalidade
9.
Pharmacopsychiatry ; 56(2): 57-63, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31370081

RESUMO

Schizophrenia is a complex, heterogeneous psychiatric disorder that affects about 1% of the global population. Hippocampal dysfunction has been linked to both cognitive deficits and positive symptoms in schizophrenia. Here, we briefly review current findings on disrupted hippocampal processing from a clinical perspective before concentrating on preclinical studies of aberrant hippocampal synaptic plasticity using the N-methyl-D-aspartate receptor hypofunction model of psychosis and related findings from genetic models. Taken together, the results put the case for maladaptive hippocampal synaptic plasticity and its extrinsic connections as mechanistic underpinnings of cognitive impairments in schizophrenia.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Animais , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Roedores/metabolismo
10.
Eur Arch Psychiatry Clin Neurosci ; 272(1): 29-40, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33942148

RESUMO

The Covid-19 pandemic highly impacts mental health worldwide. Patients with psychiatric disorders are a vulnerable risk population for worsening of their condition and relapse of symptoms. This study investigates the pandemic-related course of psychosocial burden in patients with pre-existing mental disorders. With the newly developed Goettingen psychosocial Burden and Symptom Inventory (Goe-BSI) psychosocial burden has been traced retrospectively (1) before the pandemic (beginning of 2020), (2) at its beginning under maximum lockdown conditions (March 2020), and (3) for the current state after maximum lockdown conditions (April/May 2020). The Goe-BSI also integrates the Adjustment Disorder New Module (ADNM-20), assesses general psychiatric symptoms, and resilience. A total of 213 patients covering all major psychiatric disorders (ICD-10 F0-F9) were interviewed once in the time range from April, 24th until May 11th, 2020. Across all diagnoses patients exhibited a distinct pattern with an initial rise followed by a decline of psychosocial burden (p < 0.001, partial η2 = 0.09; Bonferroni-corrected pairwise comparisons between all three time-points: p < 0.05 to 0.001). Female gender and high ADNM-20 scores were identified as risk factors for higher levels and an unfavorable course of psychosocial burden over time. Most psychiatric symptoms remained unchanged. Trajectories of psychosocial burden vary in parallel to local lockdown restrictions and seem to reflect an adaptive stress response. For female patients with pre-existing mental disorders and patients with high-stress responses, timely and specific treatment should be scheduled. With the continuation of the pandemic, monitoring of long-term effects is of major importance, especially when long incubation times for the development of mental health issues are considered.


Assuntos
COVID-19 , Efeitos Psicossociais da Doença , Transtornos Mentais , Pandemias , COVID-19/epidemiologia , COVID-19/psicologia , Feminino , Humanos , Transtornos Mentais/epidemiologia , Transtornos Mentais/psicologia , Estudos Retrospectivos
11.
Eur Arch Psychiatry Clin Neurosci ; 272(5): 757-771, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34825249

RESUMO

While the COVID-19 pandemic continues, patients with pre-existing mental disorders are increasingly recognized as a risk group for adverse outcomes. However, data are conflicting and cover only short time spans so far. Here, we investigate the medium-term and peri-lockdown-related changes of mental health outcomes in such patients in a longitudinal study. A cohort of 159 patients comprising all major mental disorders (ICD-10 F0-F9) were interviewed twice with the Goettingen psychosocial Burden and Symptom Inventory (Goe-BSI) to evaluate psychosocial burden, psychiatric symptoms and resilience at the end of the first (April/May 2020) and the second lockdown in Germany (November/December 2020). For the primary outcome "psychosocial burden" ratings also comprised retrospective pre-pandemic (early 2020) and very early states during the pandemic (March 2020). For all diagnostic groups, psychosocial burden varied significantly over time (p < 0.001) with an increase from the pre-pandemic to the initial phase (p < 0.001), followed by a steady decrease across both lockdowns, normalizing in November/December 2020. Female gender, high adjustment disorder symptom load at baseline and psychiatric comorbidities were risk factors for higher levels and an unfavorable course of psychosocial burden. Most psychiatric symptoms changed minimally, while resilience decreased over time (p = 0.044 and p = 0.037). The longitudinal course of psychosocial burden indicates an initial stress response, followed by a return to pre-pandemic levels even under recurrent lockdown conditions, mimicking symptoms of an adjustment disorder. Strategies for proactive, specific and continuous treatment have to address resilience capacities before their depletion in the pandemic aftermath, especially for patients with additional risk factors.


Assuntos
COVID-19 , Transtornos Mentais , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Feminino , Humanos , Estudos Longitudinais , Transtornos Mentais/epidemiologia , Transtornos Mentais/terapia , Saúde Mental , Pandemias , Estudos Retrospectivos , SARS-CoV-2
12.
Neuroimage ; 230: 117820, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524573

RESUMO

Subsequent memory paradigms allow to identify neural correlates of successful encoding by separating brain responses as a function of memory performance during later retrieval. In functional magnetic resonance imaging (fMRI), the paradigm typically elicits activations of medial temporal lobe, prefrontal and parietal cortical structures in young, healthy participants. This categorical approach is, however, limited by insufficient memory performance in older and particularly memory-impaired individuals. A parametric modulation of encoding-related activations with memory confidence could overcome this limitation. Here, we applied cross-validated Bayesian model selection (cvBMS) for first-level fMRI models to a visual subsequent memory paradigm in young (18-35 years) and older (51-80 years) adults. Nested cvBMS revealed that parametric models, especially with non-linear transformations of memory confidence ratings, outperformed categorical models in explaining the fMRI signal variance during encoding. We thereby provide a framework for improving the modeling of encoding-related activations and for applying subsequent memory paradigms to memory-impaired individuals.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Memória/fisiologia , Modelos Neurológicos , Estimulação Luminosa/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Eur J Neurosci ; 53(12): 3942-3959, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32583466

RESUMO

Alterations of the brain extracellular matrix (ECM) can perturb the structure and function of brain networks like the hippocampus, a key region in human memory that is commonly affected in psychiatric disorders. Here, we investigated the potential effects of a genome-wide psychiatric risk variant in the NCAN gene encoding the ECM proteoglycan neurocan (rs1064395) on memory performance, hippocampal function and cortical morphology in young, healthy volunteers. We assessed verbal memory performance in two cohorts (N = 572, 302) and found reduced recall performance in risk allele (A) carriers across both cohorts. In 117 participants, we performed functional magnetic resonance imaging using a novelty-encoding task with visual scenes. Risk allele carriers showed higher false alarm rates during recognition, accompanied by inefficiently increased left hippocampal activation. To assess effects of rs1064395 on brain morphology, we performed voxel-based morphometry in 420 participants from four independent cohorts and found lower grey matter density in the ventrolateral and rostral prefrontal cortex of risk allele carriers. In silico eQTL analysis revealed that rs1064395 SNP is linked not only to increased prefrontal expression of the NCAN gene itself, but also of the neighbouring HAPLN4 gene, suggesting a more complex effect of the SNP on ECM composition. Our results suggest that the NCAN rs1064395 A allele is associated with lower hippocampus-dependent memory function, variation of prefrontal cortex structure and ECM composition. Considering the well-documented hippocampal and prefrontal dysfunction in bipolar disorder and schizophrenia, our results may reflect an intermediate phenotype by which NCAN rs1064395 contributes to disease risk.


Assuntos
Transtorno Bipolar , Hipocampo , Neurocam/genética , Esquizofrenia , Mapeamento Encefálico , Proteoglicanas de Sulfatos de Condroitina/genética , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Lectinas Tipo C/genética , Imageamento por Ressonância Magnética , Memória , Proteínas do Tecido Nervoso/genética
14.
J Neural Transm (Vienna) ; 128(11): 1705-1720, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34302222

RESUMO

Dopaminergic neurotransmission plays a pivotal role in appetitively motivated behavior in mammals, including humans. Notably, action and valence are not independent in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward. We have previously observed that the carriers of the DRD2/ANKK1 TaqIA A1 allele, that has been associated with reduced striatal dopamine D2 receptor expression, showed a diminished learning performance when required to learn response inhibition to obtain rewards, a finding that was replicated in two independent cohorts. With our present study, we followed two aims: first, we aimed to replicate our finding on the DRD2/ANKK1 TaqIA polymorphism in a third independent cohort (N = 99) and to investigate the nature of the genetic effects more closely using trial-by-trial behavioral analysis and computational modeling in the combined dataset (N = 281). Second, we aimed to assess a potentially modulatory role of prefrontal dopamine availability, using the widely studied COMT Val108/158Met polymorphism as a proxy. We first report a replication of the above mentioned finding. Interestingly, after combining all three cohorts, exploratory analyses regarding the COMT Val108/158Met polymorphism suggest that homozygotes for the Met allele, which has been linked to higher prefrontal dopaminergic tone, show a lower learning bias. Our results corroborate the importance of genetic variability of the dopaminergic system in individual learning differences of action-valence interaction and, furthermore, suggest that motivational learning biases are differentially modulated by genetic determinants of striatal and prefrontal dopamine function.


Assuntos
Catecol O-Metiltransferase , Dopamina , Animais , Viés , Catecol O-Metiltransferase/genética , Corpo Estriado , Genótipo , Humanos , Aprendizagem , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/genética
15.
Pharmacopsychiatry ; 54(5): 205-213, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33592642

RESUMO

BACKGROUND: Brain-derived neurotrophic factor (BDNF) exerts its effects on neural plasticity via 2 distinct receptor types, the tyrosine kinase TrkB and the p75 neurotrophin receptor (p75NTR). The latter can promote inflammation and cell death while TrkB is critically involved in plasticity and memory, particularly in the hippocampus. Acute and chronic stress have been associated with suppression of hippocampal BDNF expression and impaired hippocampal plasticity. We hypothesized that p75NTR might be involved in the hippocampal stress response, in particular in stress-induced BDNF suppression, which might be accompanied by increased neuroinflammation. METHOD: We assessed hippocampal BDNF protein concentrations in wild-type mice compared that in mice lacking the long form of the p75NTR (p75NTRExIII-/-) with or without prior exposure to a 1-hour restraint stress challenge. Hippocampal BDNF concentrations were measured using an optimized ELISA. Furthermore, whole-brain mRNA expression of pro-inflammatory interleukin-6 (Il6) was assessed with RT-PCR. RESULTS: Deletion of full-length p75NTR was associated with higher hippocampal BDNF protein concentration in the stress condition, suggesting persistently high hippocampal BDNF levels in p75NTR-deficient mice, even under stress. Stress elicited increased whole-brain Il6 mRNA expression irrespective of genotype; however, p75NTRExIII-/- mice showed elevated baseline Il6 expression and thus a lower relative increase. CONCLUSIONS: Our results provide evidence for a role of p75NTR signaling in the regulation of hippocampal BDNF levels, particularly under stress. Furthermore, p75NTR signaling modulates baseline but not stress-related Il6 gene expression in mice. Our findings implicate p75NTR signaling as a potential pathomechanism in BDNF-dependent modulation of risk for neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor de Fator de Crescimento Neural , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Camundongos , Receptor de Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais
16.
Neuroimage ; 218: 116932, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32416226

RESUMO

BACKGROUND: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. METHODS: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. RESULTS: Significant MRI site and vendor effects (p â€‹< â€‹.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p â€‹< â€‹1.39E-36). In particular, volumes larger than 200 â€‹mm3 (for amygdalar nuclei) and 300 â€‹mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε â€‹< â€‹5% and DICE â€‹> â€‹0.80). CONCLUSION: Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Hipocampo/anatomia & histologia , Processamento de Imagem Assistida por Computador/normas , Neuroimagem/normas , Software , Adulto , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Reprodutibilidade dos Testes
17.
J Neurosci ; 38(22): 5067-5077, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29724796

RESUMO

Anxiety disorders are common and debilitating conditions with higher prevalence in women. However, factors that predispose women to anxiety phenotypes are not clarified. Here we investigated potential contribution of the single nucleotide polymorphism rs2236418 in GAD2 gene to changes in regional inhibition/excitation balance, anxiety-like traits, and related neural activity in both sexes. One hundred and five healthy individuals were examined with high-field (7T) multimodal magnetic resonance imaging (MRI); including resting-state functional MRI in combination with assessment of GABA and glutamate (Glu) levels via MR spectroscopy. Regional GABA/Glu levels in anterior cingulate cortex (ACC) subregions were assessed as mediators of gene-personality interaction for the trait harm avoidance and moderation by sex was tested. In AA homozygotes, with putatively lower GAD2 promoter activity, we observed increased intrinsic neuronal activity and higher inhibition/excitation balance in pregenual ACC (pgACC) compared with G carriers. The pgACC drove a significant interaction of genotype, region, and sex, where inhibition/excitation balance was significantly reduced only in female AA carriers. This finding was specific for rs2236418 as other investigated single nucleotide polymorphisms of the GABA synthesis related enzymes (GAD1, GAD2, and GLS) were not significant. Furthermore, only in women there was a negative association of pgACC GABA/Glu ratios with harm avoidance. A moderated-mediation model revealed that pgACC GABA/Glu also mediated the association between the genotype variant and level of harm avoidance, dependent on sex. Our data thus provide new insights into the neurochemical mechanisms that control emotional endophenotypes in humans and constitute predisposing factors for the development of anxiety disorders in women.SIGNIFICANCE STATEMENT Anxiety disorders are among the most common and burdensome psychiatric disorders, with higher prevalence rates in women. The causal mechanisms are, however, poorly understood. In this study we propose a neurobiological basis that could help to explain female bias of anxiety endophenotypes. Using magnetic resonance brain imaging and personality questionnaires we show an interaction of the genetic variation rs2236418 in the GAD2 gene and sex on GABA/glutamate (Glu) balance in the pregenual anterior cingulate cortex (pgACC), a region previously connected to affect regulation and anxiety disorders. The GAD2 gene polymorphism further influenced baseline neuronal activity in the pgACC. Importantly, GABA/Glu was shown to mediate the relationship between the genetic variant and harm avoidance, however, only in women.


Assuntos
Aprendizagem da Esquiva/fisiologia , Glutamato Descarboxilase/genética , Giro do Cíngulo/fisiologia , Polimorfismo Genético/genética , Adulto , Mapeamento Encefálico , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Personalidade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Adulto Jovem
18.
Hum Brain Mapp ; 40(5): 1554-1570, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30430687

RESUMO

Activation of parietal cortex structures like the precuneus is commonly observed during explicit memory retrieval, but the role of parietal cortices in encoding has only recently been appreciated and is still poorly understood. Considering the importance of the precuneus in human visual attention and imagery, we aimed to assess a potential role for the precuneus in the encoding of visuospatial representations into long-term memory. We therefore investigated the acquisition of constant versus repeatedly shuffled configurations of icons on background images over five subsequent days in 32 young, healthy volunteers. Functional magnetic resonance imaging was conducted on Days 1, 2, and 5, and persistent memory traces were assessed by a delayed memory test after another 5 days. Constant compared to shuffled configurations were associated with significant improvement of position recognition from Day 1 to 5 and better delayed memory performance. Bilateral dorsal precuneus activations separated constant from shuffled configurations from Day 2 onward, and coactivation of the precuneus and hippocampus dissociated recognized and forgotten configurations, irrespective of condition. Furthermore, learning of constant configurations elicited increased functional coupling of the precuneus with dorsal and ventral visual stream structures. Our results identify the precuneus as a key brain structure in the acquisition of detailed visuospatial information by orchestrating a parieto-occipito-temporal network.


Assuntos
Aprendizagem por Associação/fisiologia , Memória/fisiologia , Lobo Parietal/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Lobo Parietal/diagnóstico por imagem , Estimulação Luminosa , Desempenho Psicomotor , Adulto Jovem
19.
J Neuroinflammation ; 16(1): 159, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31352901

RESUMO

BACKGROUND: It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. METHODS: Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. RESULTS: Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1ß) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. CONCLUSION: Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner.


Assuntos
Encéfalo/metabolismo , Interferon gama/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Infecções por Strongylida/metabolismo , Toxoplasmose/metabolismo , Animais , Encéfalo/parasitologia , Coinfecção , Ativação de Macrófagos/fisiologia , Camundongos , Microglia/parasitologia , Nematospiroides dubius , Neurônios/parasitologia , Sinapses/metabolismo , Sinapses/parasitologia , Toxoplasma
20.
Conscious Cogn ; 69: 113-132, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30763808

RESUMO

Sudden comprehension-or insight-during problem-solving can enhance learning, but the underlying neural processes are largely unknown. We investigated neural correlates of learning from sudden comprehension using functional magnetic resonance imaging and a verbal problem-solving task. Solutions and "solutions" to solvable and unsolvable verbal problems, respectively, were presented to induce sudden comprehension or continued incomprehension. We found activations of the hippocampus, medial prefrontal cortex (mPFC), amygdala, and striatum during sudden comprehension. Notably, however, mPFC and temporo-parietal neocortical structures rather than the hippocampus were associated with later learning of suddenly comprehended solutions. Moreover, difficult compared to easy sudden comprehension elicited midbrain activations and was associated with successful learning, pointing to learning via intrinsic reward. Sudden comprehension of novel semantic associations may constitute a special case of long-term memory formation primarily mediated by the mPFC, expanding our knowledge of its role in prior-knowledge-dependent memory.


Assuntos
Associação , Compreensão/fisiologia , Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Resolução de Problemas/fisiologia , Adulto , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Semântica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA