Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Biol Evol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935588

RESUMO

The pace of current climate change is expected to be problematic for alpine flora and fauna, as their adaptive capacity may be limited by small population size. Yet despite substantial genetic drift following post-glacial recolonization of alpine habitats, alpine species are notable for their success surviving in highly heterogeneous environments. Population genomic analyses demonstrating how alpine species have adapted to novel environments with limited genetic diversity remain rare, yet are important in understanding the potential for species to respond to contemporary climate change. In this study, we explored the evolutionary history of alpine ground beetles in the Nebria ingens complex, including the demographic and adaptive changes that followed the last glacier retreat. We first tested alternative models of evolutionary divergence in the species complex. Using millions of genome-wide SNP markers from hundreds of beetles, we found evidence that the Nebria ingens complex has been formed by past admixture of lineages responding to glacial cycles. Recolonization of alpine sites involved a distributional range shift to higher elevation, which was accompanied by a reduction in suitable habitat and the emergence of complex spatial genetic structure. We tested several possible genetic pathways involved in adaptation to heterogeneous local environments using genome scan and genotype-environment association approaches. From the identified genes, we found enriched functions associated with abiotic stress responses, with strong evidence for adaptation to hypoxia-related pathways. The results demonstrate that despite rapid demographic change, alpine beetles in the N. ingens complex underwent rapid physiological evolution.

2.
J Evol Biol ; 37(1): 62-75, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285658

RESUMO

Associating with plant hosts is thought to have elevated the diversification of insect herbivores, which comprise the majority of global species diversity. In particular, there is considerable interest in understanding the genetic changes that allow host-plant shifts to occur in pest insects and in determining what aspects of functional genomic diversity impact host-plant breadth. Insect chemoreceptors play a central role in mediating insect-plant interactions, as they directly influence plant detection and sensory stimuli during feeding. Although chemosensory genes evolve rapidly, it is unclear how they evolve in response to host shifts and host specialization. We investigate whether selection at chemosensory genes is linked to host-plant expansion from the buffalo burr, Solanum rostratum, to potato, Solanum tuberosum, in the super-pest Colorado potato beetle (CPB), Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). First, to refine our knowledge of CPB chemosensory genes, we developed novel gene expression data for the antennae and maxillary-labial palps. We then examine patterns of selection at these loci within CPB, as well as compare whether rates of selection vary with respect to 9 closely related, non-pest Leptinotarsa species that vary in diet breadth. We find that rates of positive selection on olfactory receptors are higher in host-plant generalists, and this signal is particularly strong in CPB. These results provide strong candidates for further research on the genetic basis of variation in insect chemosensory performance and novel targets for pest control of a notorious super-pest.


Assuntos
Besouros , Solanum tuberosum , Animais , Besouros/genética , Solanum tuberosum/genética , Genômica , Dieta , Colorado
3.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35044459

RESUMO

Insecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural practices, yet the evolutionary mechanisms that allow pests to rapidly adapt to control tactics remains unclear. Here, we examine how a global super-pest, the Colorado potato beetle (CPB), Leptinotarsa decemlineata, rapidly evolves resistance to insecticides. Using whole-genome resequencing and transcriptomic data focused on its ancestral and pest range in North America, we assess evidence for three, nonmutually exclusive models of rapid evolution: pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation. Population genomic analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest populations exhibit similar levels of nucleotide diversity, relative to nonpest populations, and show evidence of recent expansion. Genome scans provide clear signatures of repeated adaptation across CPB populations, with especially strong evidence of selection on insecticide resistance genes in different populations. Analyses of gene expression show that constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns. CPB evolves insecticide resistance repeatedly across agricultural regions, leveraging similar genetic pathways but different genes, demonstrating a polygenic trait architecture for insecticide resistance that can evolve from standing genetic variation. Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection on regulatory genes. These results suggest that integrated pest management practices must mitigate the evolution of polygenic resistance phenotypes among local pest populations, in order to maintain the efficacy and sustainability of novel control techniques.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Análise de Sequência de DNA , Solanum tuberosum/genética
4.
Mol Ecol ; 32(6): 1425-1440, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36591939

RESUMO

Structural variation has been associated with genetic diversity and adaptation. Despite these observations, it is not clear what their relative importance is for evolution, especially in rapidly adapting species. Here, we examine the significance of structural polymorphisms in pesticide resistance evolution of the agricultural super-pest, the Colorado potato beetle, Leptinotarsa decemlineata. By employing a parent offspring trio sequencing procedure, we develop highly contiguous reference genomes to characterize structural variation. These updated assemblies represent >100-fold improvement of contiguity and include derived pest and ancestral nonpest individuals. We identify >200,000 structural variations, which appear to be nonrandomly distributed across the genome as they co-occur with transposable elements and genes. Structural variations intersect with exons in a large proportion of gene annotations (~20%) that are associated with insecticide resistance (including cytochrome P450s), development, and transcription. To understand the role structural variations play in adaptation, we measure their allele frequencies among an additional 57 individuals using whole genome resequencing data, which represents pest and nonpest populations of North America. Incorporating multiple independent tests to detect the signature of natural selection using SNP data, we identify 14 genes that are probably under positive selection, include structural variations, and SNPs of elevated frequency within the pest lineages. Among these, three are associated with insecticide resistance based on previous research. One of these genes, CYP4g15, is coinduced during insecticide exposure with glycosyltransferase-13, which is a duplicated gene enclosed within a structural variant adjacent to the CYP4g15 genic region. These results demonstrate the significance of structural variations as a genomic feature to describe species history, genetic diversity, and adaptation.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Evolução Molecular
5.
Mol Ecol ; 30(3): 826-843, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33270315

RESUMO

The evolutionary histories of alpine species are often directly associated with responses to glaciation. Deep divergence among populations and complex patterns of genetic variation have been inferred as consequences of persistence within glacier boundaries (i.e., on nunataks), while shallow divergence and limited genetic variation are assumed to result from expansion from large refugia at the edge of ice shields (i.e., massifs de refuge). However, for some species, dependence on specific microhabitats could profoundly influence their spatial and demographic response to glaciation, and such a simple dichotomy may obscure the localization of actual refugia. In this study, we use the Nebria ingens complex (Coleoptera: Carabidae), a water-affiliated ground beetle lineage, to test how drainage basins are linked to their observed population structure. By analysing mitochondrial COI gene sequences and genome-wide single nucleotide polymorphisms, we find that the major drainage systems of the Sierra Nevada Mountains in California best explain the population structure of the N. ingens complex. In addition, we find that an intermediate morphotype within the N. ingens complex is the product of historical hybridization of N. riversi and N. ingens in the San Joaquin basin during glaciation. This study highlights the importance of considering ecological preferences in how species respond to climate fluctuations and provides an explanation for discordances that are often observed in comparative phylogeographical studies.


Assuntos
Variação Genética , Refúgio de Vida Selvagem , California , DNA Mitocondrial , Ecossistema , Filogenia , Filogeografia
6.
Mol Ecol ; 30(1): 237-254, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095936

RESUMO

Contextualizing evolutionary history and identifying genomic features of an insect that might contribute to its pest status is important in developing early detection and control tactics. In order to understand the evolution of pestiferousness, which we define as the accumulation of traits that contribute to an insect population's success in an agroecosystem, we tested the importance of known genomic properties associated with rapid adaptation in the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say. Within the leaf beetle genus Leptinotarsa, only CPB, and a few populations therein, has risen to pest status on cultivated nightshades, Solanum. Using whole genomes from ten closely related Leptinotarsa species native to the United States, we reconstructed a high-quality species tree and used this phylogenetic framework to assess evolutionary patterns in four genomic features of rapid adaptation: standing genetic variation, gene family expansion and contraction, transposable element abundance and location, and positive selection at protein-coding genes. Throughout approximately 20 million years of history, Leptinotarsa species show little evidence of gene family turnover and transposable element variation. However, there is a clear pattern of CPB experiencing higher rates of positive selection on protein-coding genes. We determine that these rates are associated with greater standing genetic variation due to larger effective population size, which supports the theory that the demographic history contributes to rates of protein evolution. Furthermore, we identify a suite of coding genes under positive selection that are putatively associated with pestiferousness in the Colorado potato beetle lineage. They are involved in the biological processes of xenobiotic detoxification, chemosensation and hormone function.


Assuntos
Besouros , Solanum tuberosum , Solanum , Animais , Besouros/genética , Colorado , Filogenia
7.
Glob Chang Biol ; 27(1): 151-164, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064906

RESUMO

Over the last century, US agriculture greatly intensified and became industrialized, increasing in inputs and yields while decreasing in total cropland area. In the industrial sector, spatial agglomeration effects are typical, but such changes in the patterns of crop types and diversity would have major implications for the resilience of food systems to global change. Here, we investigate the extent to which agricultural industrialization in the United States was accompanied by agglomeration of crop types, not just overall cropland area, as well as declines in crop diversity. Based on county-level analyses of individual crop land cover area in the conterminous United States from 1840 to 2017, we found a strong and abrupt spatial concentration of most crop types in very recent years. For 13 of the 18 major crops, the widespread belts that characterized early 20th century US agriculture have collapsed, with spatial concentration increasing 15-fold after 2002. The number of counties producing each crop declined from 1940 to 2017 by up to 97%, and their total area declined by up to 98%, despite increasing total production. Concomitantly, the diversity of crop types within counties plummeted: in 1940, 88% of counties grew >10 crops, but only 2% did so in 2017, and combinations of crop types that once characterized entire agricultural regions are lost. Importantly, declining crop diversity with increasing cropland area is a recent phenomenon, suggesting that corresponding environmental effects in agriculturally dominated counties have fundamentally changed. For example, the spatial concentration of agriculture has important consequences for the spread of crop pests, agrochemical use, and climate change. Ultimately, the recent collapse of most agricultural belts and the loss of crop diversity suggest greater vulnerability of US food systems to environmental and economic change, but the spatial concentration of agriculture may also offer environmental benefits in areas that are no longer farmed.


Assuntos
Agricultura , Produtos Agrícolas , Mudança Climática , Fazendas , Estados Unidos
8.
J Exp Biol ; 224(Pt Suppl 1)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627458

RESUMO

Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.


Assuntos
Mudança Climática , Fertilidade
9.
J Hered ; 112(4): 367-376, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34009382

RESUMO

How do novel fire regimes and a long history of fire suppression influence species genetic diversity? Genetic diversity provides the raw materials for sustaining viable populations and for allowing adaptation to novel environmental challenges, and at present, few studies address the genetic responses of animals to fire management. Here we study the genetic responses of 2 butterfly species to a landscape gradient of fire timing and severity in Yosemite National Park using a large set of genome-wide single nucleotide polymorphisms (SNPs). Butterflies are important bio-indicators of invertebrate diversity and play important roles in both bottom-up and top-down ecosystem processes, and typically increase in abundance following wildfires, due to an increase in abundance of flowering plants. However, it is not clear how genetic diversity and genetic connectivity of butterflies respond to landscape change following fire, and whether fire management has positive or negative effects. We found evidence to suggest that fire increases genetic diversity and reduces isolation in 2 butterfly species, but that aspects of the fire regime (severity, extent, timing, and frequency) differ in importance depending on the ecology of the specific species. This research is the first study to address fire management impacts on genetic diversity in invertebrates, and the results will allow fire managers to predict that fire reintroduction in protected areas will generally benefit butterfly populations.


Assuntos
Borboletas , Incêndios , Incêndios Florestais , Animais , Borboletas/genética , Ecossistema , Variação Genética
10.
Mol Ecol ; 28(23): 5086-5102, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31625639

RESUMO

Colour pattern has served as an important phenotype in understanding the process of natural selection, particularly in brightly coloured and variable species like butterflies. However, different selective forces operate on aspects of colour pattern, for example by favouring warning colours in eyespots or alternatively favoring investment in thermoregulatory properties of melanin. Additionally, genetic drift influences colour phenotypes, especially in populations undergoing population size change. Here, we investigated the relative roles of genetic drift and ecological selection in generating the phenotypic diversity of the butterfly Parnassius clodius. Genome-wide patterns of single nucleotide polymorphism data show that P. clodius forms three population clusters, which experienced a period of population expansion following the last glacial maximum and have since remained relatively stable in size. After correcting for relatedness, morphological variation is best explained by climatic predictor variables, suggesting ecological selection generates trait variability. Solar radiation and precipitation are both negatively correlated with increasing total melanin in both sexes, supporting a thermoregulatory function of melanin. Similarly, wing size traits are significantly larger in warmer habitats for both sexes, supporting a Converse Bergmann Rule pattern. Bright red coloration is negatively correlated with temperature seasonality and solar radiation in males, and weakly associated with insectivorous avian predators in univariate models, providing mixed evidence that selection is linked to warning coloration and predator avoidance. Together, these results suggest that elements of butterfly wing phenotypes respond independently to different sources of selection and that thermoregulation is an important driver of phenotypic differentiation in Parnassian butterflies.


Assuntos
Evolução Biológica , Borboletas/genética , Ecologia , Seleção Genética , Animais , Aves/fisiologia , Borboletas/fisiologia , Cor , Fenótipo , Pigmentação/genética , Pigmentação/fisiologia , Comportamento Predatório/fisiologia , Asas de Animais
11.
Mol Ecol ; 26(22): 6284-6300, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28857332

RESUMO

The ability of insect pests to rapidly and repeatedly adapt to insecticides has long challenged entomologists and evolutionary biologists. Since Crow's seminal paper on insecticide resistance in 1957, new data and insights continue to emerge that are relevant to the old questions about how insecticide resistance evolves: such as whether it is predominantly mono- or polygenic, and evolving from standing vs. de novo genetic variation. Many studies support the monogenic hypothesis, and current management recommendations assume single- or two-locus models. But inferences could be improved by integrating data from a broader sample of pest populations and genomes. Here, we generate evidence relevant to these questions by applying a landscape genomics framework to the study of insecticide resistance in a major agricultural pest, Colorado potato beetle, Leptinotarsa decemlineata (Say). Genome-environment association tests using genomic variation from 16 populations spanning gradients of landscape variables associated with insecticide exposure over time revealed 42 strong candidate insecticide resistance genes, with potentially overlapping roles in multiple resistance mechanisms. Measurements of resistance to a widely used insecticide, imidacloprid, among 47 L. decemlineata populations revealed heterogeneity at a small (2 km) scale and no spatial signature of origin or spread throughout the landscape. Analysis of nucleotide diversity suggested candidate resistance loci have undergone varying degrees of selective sweeps, often maintaining similar levels of nucleotide diversity to neutral loci. This study suggests that many genes are involved in insecticide resistance in L. decemlineata and that resistance likely evolves from both de novo and standing genetic variation.


Assuntos
Besouros/genética , Genética Populacional , Resistência a Inseticidas/genética , Herança Multifatorial , Animais , Genes de Insetos , Genômica , Genótipo , Polimorfismo de Nucleotídeo Único , Análise Espacial , Wisconsin
12.
Mol Ecol ; 25(2): 454-69, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26671840

RESUMO

Population differentiation (PD) and ecological association (EA) tests have recently emerged as prominent statistical methods to investigate signatures of local adaptation using population genomic data. Based on statistical models, these genomewide testing procedures have attracted considerable attention as tools to identify loci potentially targeted by natural selection. An important issue with PD and EA tests is that incorrect model specification can generate large numbers of false-positive associations. Spurious association may indeed arise when shared demographic history, patterns of isolation by distance, cryptic relatedness or genetic background are ignored. Recent works on PD and EA tests have widely focused on improvements of test corrections for those confounding effects. Despite significant algorithmic improvements, there is still a number of open questions on how to check that false discoveries are under control and implement test corrections, or how to combine statistical tests from multiple genome scan methods. This tutorial study provides a detailed answer to these questions. It clarifies the relationships between traditional methods based on allele frequency differentiation and EA methods and provides a unified framework for their underlying statistical tests. We demonstrate how techniques developed in the area of genomewide association studies, such as inflation factors and linear mixed models, benefit genome scan methods and provide guidelines for good practice while conducting statistical tests in landscape and population genomic applications. Finally, we highlight how the combination of several well-calibrated statistical tests can increase the power to reject neutrality, improving our ability to infer patterns of local adaptation in large population genomic data sets.


Assuntos
Ecologia/métodos , Genética Populacional , Genômica/métodos , Seleção Genética , Adaptação Fisiológica/genética , Algoritmos , Arabidopsis/genética , Frequência do Gene , Estudos de Associação Genética , Modelos Genéticos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único
14.
Mol Biol Evol ; 30(7): 1687-99, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23543094

RESUMO

Adaptation to local environments often occurs through natural selection acting on a large number of loci, each having a weak phenotypic effect. One way to detect these loci is to identify genetic polymorphisms that exhibit high correlation with environmental variables used as proxies for ecological pressures. Here, we propose new algorithms based on population genetics, ecological modeling, and statistical learning techniques to screen genomes for signatures of local adaptation. Implemented in the computer program "latent factor mixed model" (LFMM), these algorithms employ an approach in which population structure is introduced using unobserved variables. These fast and computationally efficient algorithms detect correlations between environmental and genetic variation while simultaneously inferring background levels of population structure. Comparing these new algorithms with related methods provides evidence that LFMM can efficiently estimate random effects due to population history and isolation-by-distance patterns when computing gene-environment correlations, and decrease the number of false-positive associations in genome scans. We then apply these models to plant and human genetic data, identifying several genes with functions related to development that exhibit strong correlations with climatic gradients.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional , Polimorfismo Genético , Seleção Genética/genética , Algoritmos , Ecologia , Meio Ambiente , Interação Gene-Ambiente , Variação Genética , Humanos , Modelos Teóricos
15.
Environ Entomol ; 53(3): 447-456, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38574195

RESUMO

Eastern subterranean termites, Reticulitermes flavipes (Kollar), are widely distributed across North America where they are exposed to a broad range of environmental conditions. However, mechanisms for overwintering are not well understood. Wisconsin is a unique location to study mechanisms of cold tolerance as it represents the northern boundary for persistent R. flavipes populations. In this study, we evaluated seasonal shifts in cold tolerance using critical thermal minimum (CTmin) and supercooling point (SCP) and examined how these measurements correlate to changes in the microbial community of the termite gut. Results showed seasonal acclimatization to cold, which is consistent with the use of behavioral freeze-avoidant mechanisms. However, these insects also demonstrated an increased susceptibility to freezing later in the season, which may be tied to changes in gut microbiota. Our results found shifts in the composition of the gut microbiome in R. flavipes between mid- to late summer and early to late fall. These differences may be suggestive of a change in metabolism to adjust to a period of reduced feeding and increased metabolic stress during overwintering. Specifically, results showed an increased abundance of Methanobrevibacter sp. (Euryarchaeota) associated with cold, which may be indicative of a metabolic shift from acetogenesis to methanogenesis associated with overwintering. Further work is needed focusing on specific contributions of certain gut microbes, particularly their role in metabolic adaptability and in providing protection from oxidative stress associated with changes in environmental conditions.


Assuntos
Aclimatação , Temperatura Baixa , Microbioma Gastrointestinal , Isópteros , Estações do Ano , Animais , Isópteros/fisiologia , Isópteros/microbiologia , Wisconsin
16.
Genome Biol Evol ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38662498

RESUMO

Nonbiting midges (family Chironomidae) are found throughout the world in a diverse array of aquatic and terrestrial habitats, can often tolerate harsh conditions such as hypoxia or desiccation, and have consistently compact genomes. Yet we know little about the shared molecular basis for these attributes and how they have evolved across the family. Here, we address these questions by first creating high-quality, annotated reference assemblies for Tanytarsus gracilentus (subfamily Chironominae, tribe Tanytarsini) and Parochlus steinenii (subfamily Podonominae). Using these and other publicly available assemblies, we created a time-calibrated phylogenomic tree for family Chironomidae with outgroups from order Diptera. We used this phylogeny to test for features associated with compact genomes, as well as examining patterns of gene family evolution and positive selection that may underlie chironomid habitat tolerances. Our results suggest that compact genomes evolved in the common ancestor of Chironomidae and Ceratopogonidae and that this occurred mainly through reductions in noncoding regions (introns, intergenic sequences, and repeat elements). Significantly expanded gene families in Chironomidae included biological processes that may relate to tolerance of stressful environments, such as temperature homeostasis, carbohydrate transport, melanization defense response, and trehalose transport. We identified several positively selected genes in Chironomidae, notably sulfonylurea receptor, CREB-binding protein, and protein kinase D. Our results improve our understanding of the evolution of small genomes and extreme habitat use in this widely distributed group.


Assuntos
Chironomidae , Ecossistema , Genoma de Inseto , Filogenia , Chironomidae/genética , Animais , Evolução Molecular , Seleção Genética
17.
Mol Phylogenet Evol ; 66(3): 915-27, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23220515

RESUMO

Fragment islands, viewed from the paradigm of island biogeographic theory, depend on continual immigration from continental sources to maintain levels of species diversity, or otherwise undergo a period of relaxation where species diversity declines to a lower equilibrium. Japan is a recently derived fragment island with a rich endemic flora and fauna. These endemic species have been described as paleoendemics, and conversely as recently derived Pleistocene colonists. Geological events in the Miocene period, notably the fragmentation and collision of islands, and the subsequent uplift of mountains in central Japan, provided opportunities for genetic isolation. More recently, cyclical climatic change during the Pliocene and Pleistocene periods led to intermittent land bridge connections to continental Asia. Here we investigate the pattern and timing of diversification in a diverse endemic lineage in order to test whether ongoing migration has sustained species diversity, whether there is evidence of relaxation, and how geological and climatic events are associated with lineage diversification. Using multi-locus genetic data, we test these hypotheses in a poorly dispersing, cold-adapted terrestrial insect lineage (Grylloblattodea: Grylloblattidae) sampled from Japan, Korea, and Russia. In phylogenetic analyses of concatenated data and a species tree approach, we find evidence of three deeply divergent lineages of rock-crawlers in Japan consistent with the pattern of island fragmentation from continental Asia. Tests of lineage diversification rates suggest that relaxation has not occurred and instead endemism has increased in the Japanese Grylloblattidae following mountain-building events in the Miocene. Although the importance of climate change in generating species diversity is a commonly held paradigm in Japanese biogeography, our analyses, including analyses of demographic change and phylogeographic range shifts in putative species, suggests that Pleistocene climatic change has had a limited effect on the diversification of rock-crawlers.


Assuntos
Distribuição Animal , Mudança Climática , Fenômenos Geológicos , Insetos/genética , Ilhas , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Biologia Computacional , Geografia , Insetos/classificação , Japão , Coreia (Geográfico) , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Federação Russa , Análise de Sequência de DNA , Especificidade da Espécie
18.
Zootaxa ; 3737: 351-78, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25112759

RESUMO

We provide an updated checklist and comprehensive distributional record of Grylloblatta (Grylloblattodea: Grylloblattidae) in North America. These distribution records are based upon a thorough review of the literature, as well as unpublished data of the authors and colleagues. Thirteen species of Grylloblatta are currently described, with up to 16 additional taxa awaiting formal description. Distributional data shows that endemism of Grylloblatta is high and geographic range size is typically small: the median geographical area of 13 species and six putative species is 179 km2. It is clear that there is a general lack of knowledge of species range limits and local population sizes; for example, three Grylloblatta species are known from just a single locality and less than 15 specimens each. Conservation status ranks are suggested in order to update the IUCN Red List and national Natural Heritage Network Database. Finally, we describe the natural history and seasonality of Grylloblatta, discuss their unique biogeography, and provide recommendations for future surveys of grylloblattid species by highlighting known distributional gaps.


Assuntos
Biodiversidade , Insetos , Animais , Lista de Checagem , Conservação dos Recursos Naturais , América do Norte
19.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37461625

RESUMO

Biological invasions carry substantial practical and scientific importance, and represent natural evolutionary experiments on contemporary timescales. Here, we investigated genomic diversity and environmental adaptation of the crop pest Drosophila suzukii using whole-genome sequencing data and environmental metadata for 29 population samples from its native and invasive range. Through a multifaceted analysis of this population genomic data, we increase our understanding of the D. suzukii genome, its diversity and its evolution, and we identify an appropriate genotype-environment association pipeline for our data set. Using this approach, we detect genetic signals of local adaptation associated with nine distinct environmental factors related to altitude, wind speed, precipitation, temperature, and human land use. We uncover unique functional signatures for each environmental variable, such as a prevalence of cuticular genes associated with annual precipitation. We also infer biological commonalities in the adaptation to diverse selective pressures, particularly in terms of the apparent contribution of nervous system evolution to enriched processes (ranging from neuron development to circadian behavior) and to top genes associated with all nine environmental variables. Our findings therefore depict a finer-scale adaptive landscape underlying the rapid invasion success of this agronomically important species.

20.
Curr Opin Insect Sci ; 55: 101000, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36521782

RESUMO

Despite considerable research, efforts to manage insecticide resistance continue to fail. The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), epitomizes this problem, as it has repeatedly and rapidly evolved resistance to>50 insecticides. The patterns of resistance evolution are intriguing, as they defy models where resistance evolves from rare mutations. Here, we synthesize recent research on insecticide resistance in CPB showing that polygenic resistance drawn from standing genetic diversity explains genomic patterns of insecticide resistance evolution. However, rapid gene regulatory evolution suggests that other mechanisms might also facilitate adaptive change. We explore the hypothesis that sublethal stress from insecticide exposure could alter heritable epigenetic modifications, and discuss the range of experimental approaches needed to fully understand insecticide resistance evolution in this super pest.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA