Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
J Am Chem Soc ; 146(20): 14048-14057, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38713054

RESUMO

Optimization of active sites and stability under irradiation are important targets for sorbent materials that might be used for iodine (I2) storage. Herein, we report the direct observation of I2 binding in a series of Cu(II)-based isostructural metal-organic frameworks, MFM-170, MFM-172, MFM-174, NJU-Bai20, and NJU-Bai21, incorporating various functional groups (-H, -CH3, - NH2, -C≡C-, and -CONH-, respectively). MFM-170 shows a reversible uptake of 3.37 g g-1 and a high packing density of 4.41 g cm-3 for physiosorbed I2. The incorporation of -NH2 and -C≡C- moieties in MFM-174 and NJU-Bai20, respectively, enhances the binding of I2, affording uptakes of up to 3.91 g g-1. In addition, an exceptional I2 packing density of 4.83 g cm-3 is achieved in MFM-174, comparable to that of solid iodine (4.93 g cm-3). In situ crystallographic studies show the formation of a range of supramolecular and chemical interactions [I···N, I···H2N] and [I···C≡C, I-C═C-I] between -NH2, -C≡C- sites, respectively, and adsorbed I2 molecules. These observations have been confirmed via a combination of solid-state nuclear magnetic resonance, X-ray photoelectron, and Raman spectroscopies. Importantly, γ-irradiation confirmed the ultraresistance of MFM-170, MFM-174, and NJU-Bai20 suggesting their potential as efficient sorbents for cleanup of radioactive waste.

2.
Acc Chem Res ; 56(19): 2569-2581, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37646412

RESUMO

ConspectusMetal-organic frameworks (MOFs) are a class of hybrid porous materials characterized by their periodic assembly using metal ions and organic ligands through coordination bonds. Their high crystallinity, extensive surface area, and adjustable pore sizes make them promising candidates for a wide array of applications. These include gas adsorption and separation, substrate binding, and catalysis, of relevance to tackling pressing global issues such as climate change, energy challenges, and pollution. In comparison to traditional porous materials such as zeolites and activated carbons, the design flexibility of organic ligands in MOFs, coupled with their orderly arrangement with associated metal centers, allows for the precise engineering of uniform pore environments. This unique feature enables a rich variety of interactions between the MOF host and adsorbed gas molecules, which are fundamental to understanding the observed uptake capacity and selectivity for target gas molecules and thus the overall performance of the material.In this Account, a data set for three-dimensional MOFs has been constructed based upon the structural analysis of host-guest interactions using the largest experimental database, the Cambridge Structural Database (CSD). A full screening was performed on structures with guest molecules of H2, C2H2, CO2, and SO2, and the relationship between the primary binding site, the isosteric heats of adsorption (Qst), and the adsorption uptake was extracted and established. We review the methodologies to refine host-guest interactions based primarily on our studies on the host-guest chemistry of MOFs. The methods include ligand functionalization, variation of metal centers, formation of defects, addition of single atom sites, and control of pore size and structure. In situ structural and dynamic investigations using diffraction and spectroscopic techniques are powerful tools to visualize the details of host-guest interactions upon the above modifications, affording key insights into functional performance at a molecular level. Finally, we give an outlook of future research priorities in the study of host-guest chemistry in MOF materials. We hope this Account will encourage the rational development and improvement of future MOF-based sorbents for applications in challenging gas adsorption, separations, and catalysis.

3.
Chemistry ; 30(20): e202303934, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38102961

RESUMO

The selective capture of methane (CH4) at low concentrations and its separation from N2 are extremely challenging owing to the weak host-guest interactions between CH4 molecules and any sorbent material. Here, we report the exceptional adsorption of CH4 at low pressure and the efficient separation of CH4/N2 by MFM-300(Fe). MFM-300(Fe) shows a very high uptake for CH4 of 0.85 mmol g-1 at 1 mbar and 298 K and a record CH4/N2 selectivity of 45 for porous solids, representing a new benchmark for CH4 capture and CH4/N2 separation. The excellent separation of CH4/N2 by MFM-300(Fe) has been confirmed by dynamic breakthrough experiments. In situ neutron powder diffraction, and solid-state nuclear magnetic resonance and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modelling, reveal a unique and strong binding of CH4 molecules involving Fe-OH⋯CH4 and C⋯phenyl ring interactions within the pores of MFM-300(Fe), thus promoting the exceptional adsorption of CH4 at low pressure.

4.
Chemistry ; 30(7): e202303289, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899311

RESUMO

Formamides are important feedstocks for the manufacture of many fine chemicals. State-of-the-art synthesis of formamides relies on the use of an excess amount of reagents, giving copious waste and thus poor atom-economy. Here, we report the first example of direct synthesis of N-formamides by coupling two challenging reactions, namely reductive amination of carbonyl compounds, particularly biomass-derived aldehydes and ketones, and fixation of CO2 in the presence of H2 over a metal-organic framework supported ruthenium catalyst, Ru/MFM-300(Cr). Highly selective production of N-formamides has been observed for a wide range of carbonyl compounds. Synchrotron X-ray powder diffraction reveals the presence of strong host-guest binding interactions via hydrogen bonding and parallel-displaced π⋅⋅⋅π interactions between the catalyst and adsorbed substrates facilitating the activation of substrates and promoting selectivity to formamides. The use of multifunctional porous catalysts to integrate CO2 utilisation in the synthesis of formamide products will have a significant impact in the sustainable synthesis of feedstock chemicals.

5.
Angew Chem Int Ed Engl ; : e202404084, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863431

RESUMO

Stimuli-responsive physisorbents that undergo reversible structural transformations induced by external stimuli (e.g. light, guests, or heat) offer the promise of utility in gas storage and separation. Whereas reports on guest or light-responsive sorbents have increased in recent years, we are unaware of reports on sorbents that exhibit both light and guest-induced structural transformations. Herein, we report that the square lattice, sql, topology coordination network Zn(fba)(bis)Ù 2DMF (sql-5,6-Zn-a, 5 = trans-4,4'-bis(1-imidazolyl)stilbene = bis, 6 = 2,2-bis(4-carboxyphenyl)hexafluoropropane = H2fba) underwent single-crystal-to-single-crystal transformation (SCSC) upon activation, affording nonporous sql-5,6-Zn-b. Parallel alignment at 3.23 Å of olefinic moieties on adjacent bis ligands in sql-5,6-Zn-a enabled SCSC [2 + 2] photocycloaddition upon exposure to UV light (365 nm) or sunlight. sql-5,6-Zn-α thereby transformed to mot-5,6-Zn-α, which was subsequently activated to the narrow pore phase mot-5,6-Zn-b. sql-5,6-Zn-b and mot-5,6-Zn-b both exhibited S-shaped adsorption isotherms characteristic of guest-induced structural changes when exposed to CO2 at 195 K (type-F-IV and type F-I, respectively). Cycling experiments conducted upon sql-5,6-Zn-b reduced particle size after cycle 1 and induced transformation into a rare example of a shape memory coordination network, sql-5,6-Zn-g. Insight into this smorgasbord of SCSC phase changes was gained from in-situ PXRD, single crystal XRD and 1H nmr spectroscopy experiments.

6.
J Am Chem Soc ; 145(4): 1998-2012, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689628

RESUMO

The efficient production of ammonia (NH3) from dinitrogen (N2) and water (H2O) using renewable energy is an important step on the roadmap to the ammonia economy. The productivity of this conversion hinges on the design and development of new active catalysts. In the wide scope of materials that have been examined as catalysts for the photo- and electro-driven reduction of N2 to NH3, functional metal-organic framework (MOF) catalysts exhibit unique properties and appealing features. By elucidating their structural and spectroscopic properties and linking this to the observed activity of MOF-based catalysts, valuable information can be gathered to inspire new generations of advanced catalysts to produce green NH3. NH3 is also a surrogate for the hydrogen (H2) economy, and the potential application of MOFs for the practical and effective capture, safe storage, and transport of NH3 is also discussed. This Perspective analyzes the contribution that MOFs can make toward the ammonia economy.

7.
J Am Chem Soc ; 145(35): 19225-19231, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37606549

RESUMO

Proton-exchange membrane fuel cells enable the portable utilization of hydrogen (H2) as an energy resource. Current electrolytic materials have limitation, and there is an urgent need to develop new materials showing especially high proton conductivity. Here, we report the ultra-fast proton conduction in a novel metal-organic framework, MFM-808, which adopts an unprecedented topology and a unique structure consisting of two-dimensional layers of {Zr6}-clusters. By replacing the bridging formate with sulfate ligands within {Zr6}-layers, the modified MFM-808-SO4 exhibits an exceptional proton conductivity of 0.21 S·cm-1 at 85 °C and 99% relative humidity. Modeling by molecular dynamics confirms that proton transfer is promoted by an efficient two-dimensional conducting network assembled by sulfate-{Zr6}-layers. MFM-808-SO4 also possesses excellent photocatalytic activity for water splitting to produce H2, paving a new pathway to achieve a renewable hydrogen-energy cycle.

8.
J Am Chem Soc ; 145(38): 20792-20800, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37722104

RESUMO

Conversion of methane (CH4) to ethylene (C2H4) and/or acetylene (C2H2) enables routes to a wide range of products directly from natural gas. However, high reaction temperatures and pressures are often required to activate and convert CH4 controllably, and separating C2+ products from unreacted CH4 can be challenging. Here, we report the direct conversion of CH4 to C2H4 and C2H2 driven by non-thermal plasma under ambient (25 °C and 1 atm) and flow conditions over a metal-organic framework material, MFM-300(Fe). The selectivity for the formation of C2H4 and C2H2 reaches 96% with a high time yield of 334 µmol gcat-1 h-1. At a conversion of 10%, the selectivity to C2+ hydrocarbons and time yield exceed 98% and 2056 µmol gcat-1 h-1, respectively, representing a new benchmark for conversion of CH4. In situ neutron powder diffraction, inelastic neutron scattering and solid-state nuclear magnetic resonance, electron paramagnetic resonance (EPR), and diffuse reflectance infrared Fourier transform spectroscopies, coupled with modeling studies, reveal the crucial role of Fe-O(H)-Fe sites in activating CH4 and stabilizing reaction intermediates via the formation of an Fe-O(CH3)-Fe adduct. In addition, a cascade fixed-bed system has been developed to achieve online separation of C2H4 and C2H2 from unreacted CH4 for direct use. Integrating the processes of CH4 activation, conversion, and product separation within one system opens a new avenue for natural gas utility, bridging the gap between fundamental studies and practical applications in this area.

9.
Nat Mater ; 21(8): 932-938, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35773491

RESUMO

Natural gas, consisting mainly of methane (CH4), has a relatively low energy density at ambient conditions (~36 kJ l-1). Partial oxidation of CH4 to methanol (CH3OH) lifts the energy density to ~17 MJ l-1 and drives the production of numerous chemicals. In nature, this is achieved by methane monooxygenase with di-iron sites, which is extremely challenging to mimic in artificial systems due to the high dissociation energy of the C-H bond in CH4 (439 kJ mol-1) and facile over-oxidation of CH3OH to CO and CO2. Here we report the direct photo-oxidation of CH4 over mono-iron hydroxyl sites immobilized within a metal-organic framework, PMOF-RuFe(OH). Under ambient and flow conditions in the presence of H2O and O2, CH4 is converted to CH3OH with 100% selectivity and a time yield of 8.81 ± 0.34 mmol gcat-1 h-1 (versus 5.05 mmol gcat-1 h-1 for methane monooxygenase). By using operando spectroscopic and modelling techniques, we find that confined mono-iron hydroxyl sites bind CH4 by forming an [Fe-OH···CH4] intermediate, thus lowering the barrier for C-H bond activation. The confinement of mono-iron hydroxyl sites in a porous matrix demonstrates a strategy for C-H bond activation in CH4 to drive the direct photosynthesis of CH3OH.


Assuntos
Metano , Metanol , Metano/química , Oxirredução
10.
Inorg Chem ; 62(42): 17157-17162, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37812797

RESUMO

Metal-organic framework (MOF) materials are attracting increasing interest in the field of electronics due to their structural diversity, intrinsic porosity, and designable host-guest interactions. Here, we report the dielectric properties of a series of robust materials, MFM-300(M) (M = Al, Sc, Cr, Fe, Ga, In), when exposed to different guest molecules. MFM-300(Fe) exhibits the most notable increase in dielectric constant to 35.3 ± 0.3 at 10 kHz upon adsorption of NH3. Structural analysis suggests that the electron delocalization induced by host-guest interactions between NH3 and the MOF host, as confirmed by neutron powder diffraction studies, leads to structural polarization, resulting in a high dielectric constant for NH3@MFM-300(Fe). This is further supported by ligand-to-metal charge-transfer transitions observed by solid-state UV/vis spectroscopy. The high detection sensitivity and stability to NH3 suggest that MFM-300(Fe) may act as a powerful dielectric-based sensor for NH3.

11.
Chem Soc Rev ; 51(8): 3243-3262, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35363235

RESUMO

Nuclear power will continue to provide energy for the foreseeable future, but it can pose significant challenges in terms of the disposal of waste and potential release of untreated radioactive substances. Iodine is a volatile product from uranium fission and is particularly problematic due to its solubility. Different isotopes of iodine present different issues for people and the environment. 129I has an extremely long half-life of 1.57 × 107 years and poses a long-term environmental risk due to bioaccumulation. In contrast, 131I has a shorter half-life of 8.02 days and poses a significant risk to human health. There is, therefore, an urgent need to develop secure, efficient and economic stores to capture and sequester ionic and neutral iodine residues. Metal-organic framework (MOF) materials are a new generation of solid sorbents that have wide potential applicability for gas adsorption and substrate binding, and recently there is emerging research on their use for the selective adsorptive removal of iodine. Herein, we review the state-of-the-art performance of MOFs for iodine adsorption and their host-guest chemistry. Various aspects are discussed, including establishing structure-property relationships between the functionality of the MOF host and iodine binding. The techniques and methodologies used for the characterisation of iodine adsorption and of iodine-loaded MOFs are also discussed together with strategies for designing new MOFs that show improved performance for iodine adsorption.


Assuntos
Iodo , Estruturas Metalorgânicas , Adsorção , Humanos , Íons , Estruturas Metalorgânicas/química
12.
Angew Chem Int Ed Engl ; 62(48): e202306267, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37783657

RESUMO

Deuterium labelling of organic compounds is an important process in chemistry. We report the first example of photocatalytic dehalogenative deuteration of both arylhalides and alkylhalides (40 substrates) over a metal-organic framework, MFM-300(Cr), using CD3 CN as the deuterium source at room temperature. MFM-300(Cr) catalyses high deuterium incorporation and shows excellent tolerance to various functional groups. Synchrotron X-ray powder diffraction reveals the activation of halogenated substrates via confined binding within MFM-300(Cr). In situ electron paramagnetic resonance spectroscopy confirms the formation of carbon-based radicals as intermediates and reveals the reaction pathway. This protocol removes the use of precious-metal catalysts from state-of-the-art processes based upon direct hydrogen isotope exchange and shows high photocatalytic stability, thus enabling multiple catalytic cycles.

13.
Angew Chem Int Ed Engl ; 62(28): e202302602, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37027005

RESUMO

We report the modulation of reactivity of nitrogen dioxide (NO2 ) in a charged metal-organic framework (MOF) material, MFM-305-CH3 in which unbound N-centres are methylated and the cationic charge counter-balanced by Cl- ions in the pores. Uptake of NO2 into MFM-305-CH3 leads to reaction between NO2 and Cl- to give nitrosyl chloride (NOCl) and NO3 - anions. A high dynamic uptake of 6.58 mmol g-1 at 298 K is observed for MFM-305-CH3 as measured using a flow of 500 ppm NO2 in He. In contrast, the analogous neutral material, MFM-305, shows a much lower uptake of 2.38 mmol g-1 . The binding domains and reactivity of adsorbed NO2 molecules within MFM-305-CH3 and MFM-305 have been probed using in situ synchrotron X-ray diffraction, inelastic neutron scattering and by electron paramagnetic resonance, high-field solid-state nuclear magnetic resonance and UV/Vis spectroscopies. The design of charged porous sorbents provides a new platform to control the reactivity of corrosive air pollutants.

14.
J Am Chem Soc ; 144(41): 18967-18975, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198137

RESUMO

Increasing levels of air pollution are driving the need for the development of new processes that take "waste-to-chemicals". Herein, we report the capture and conversion under ambient conditions of a major air pollutant, NO2, using a robust metal-organic framework (MOF) material, Zr-bptc (H4bptc = 3,3',5,5'-biphenyltetracarboxylic acid), comprising {Zr6(µ3-O)4(µ3-OH)4(COO)12} clusters linked by 4-connected bptc4- ligands in an ftw topology. At 298 K, Zr-bptc shows exceptional stability and adsorption of NO2 at both low (4.9 mmol g-1 at 10 mbar) and high pressures (13.8 mmol g-1 at 1.0 bar), as measured by isotherm experiments. Dynamic breakthrough experiments have confirmed the selective retention of NO2 by Zr-bptc at low concentrations under both dry and wet conditions. The immobilized NO2 can be readily transformed into valuable nitro compounds relevant to construction, agrochemical, and pharmaceutical industries. In situ crystallographic and spectroscopic studies reveal strong binding interactions of NO2 to the {Zr6(µ3-O)4(µ3-OH)4(COO)12} cluster node. This study paves a circular pathway to enable the integration of nitrogen-based air pollutants into the production of fine chemicals.


Assuntos
Poluentes Atmosféricos , Estruturas Metalorgânicas , Dióxido de Nitrogênio , Estruturas Metalorgânicas/química , Nitrocompostos , Ligantes , Poluentes Atmosféricos/análise , Agroquímicos , Nitrogênio
15.
J Am Chem Soc ; 144(19): 8624-8632, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35533381

RESUMO

The presence of active sites in metal-organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH3 in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111-1135 m2 g-1), decoration of the -OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH3 at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g-1 in UiO-66-CuII. A 100% enhancement of dynamic adsorption of NH3 at a concentration level of 630 ppm from 2.07 mmol g-1 in UiO-66-defect to 4.15 mmol g-1 in UiO-66-CuII at 298 K is observed. In situ neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH3 uptake in UiO-66-CuII originates from a {Cu(II)···NH3} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH3 binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH3 capture and storage.

16.
J Am Chem Soc ; 144(29): 13196-13204, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848823

RESUMO

The development of efficient sorbent materials for sulfur dioxide (SO2) is of key industrial interest. However, due to the corrosive nature of SO2, conventional porous materials often exhibit poor reversibility and limited uptake toward SO2 sorption. Here, we report high adsorption of SO2 in a series of Cu(II)-carboxylate-based metal-organic framework materials. We describe the impact of ligand functionalization and open metal sites on the uptake and reversibility of SO2 adsorption. Specifically, MFM-101 and MFM-190(F) show fully reversible SO2 adsorption with remarkable capacities of 18.7 and 18.3 mmol g-1, respectively, at 298 K and 1 bar; the former represents the highest reversible uptake of SO2 under ambient conditions among all porous solids reported to date. In situ neutron powder diffraction and synchrotron infrared microspectroscopy enable the direct visualization of binding domains of adsorbed SO2 molecules as well as host-guest binding dynamics. We have found that the combination of open Cu(II) sites and ligand functionalization, together with the size and geometry of metal-ligand cages, plays an integral role in the enhancement of SO2 binding.

17.
J Am Chem Soc ; 144(27): 11969-11974, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775201

RESUMO

The development of materials showing rapid proton conduction with a low activation energy and stable performance over a wide temperature range is an important and challenging line of research. Here, we report confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low activation energy of 0.04 eV, resulting in stable proton conductivity between 25 and 80 °C of >10-2 S cm-1. In situ synchrotron X-ray powder diffraction (SXPD), neutron powder diffraction (NPD), quasielastic neutron scattering (QENS), and molecular dynamics (MD) simulation reveal the pathways of proton transport and the molecular mechanism of proton diffusion within the pores. Confined sulfuric acid species together with adsorbed water molecules play a critical role in promoting the proton transfer through this robust network to afford a material in which proton conductivity is almost temperature-independent.

18.
Chemistry ; 28(52): e202201188, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35762497

RESUMO

Single crystals of 2D coordination network {Cu2 L2 ⋅ (DMF)3 (H2 O)3 }n (1-DMF) were prepared by reaction of commercial reagents 3-formyl-4-hydroxybenzoic acid (H2 L) and Cu(NO3 )2 in dimethylformamide (DMF). The single-crystal structure shows two distinct Cu(II) coordination environments arising from the separate coordination of Cu(II) cations to the carboxylate and salicylaldehydato moieties on the linker, with 1D channels running through the structure. Flexibility is exhibited on solvent exchange with ethanol and tetrahydrofuran, while porosity and the unique overall connectivity of the structure are retained. The activated material exhibits type I gas sorption behaviour and a BET surface area of 950 m2 g-1 (N2 , 77 K). Notably, the framework adsorbs negligible quantities of CH4 compared with CO2 and the C2 Hn hydrocarbons. It exhibits exceptional selectivity for C2 H2 /CH4 and C2 H2 /C2 Hn , which has applicability in separation technologies for the isolation of C2 H2 .

19.
Nat Chem Biol ; 16(11): 1179-1188, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989298

RESUMO

The mitotic kinase AURORA-A is essential for cell cycle progression and is considered a priority cancer target. Although the catalytic activity of AURORA-A is essential for its mitotic function, recent reports indicate an additional non-catalytic function, which is difficult to target by conventional small molecules. We therefore developed a series of chemical degraders (PROTACs) by connecting a clinical kinase inhibitor of AURORA-A to E3 ligase-binding molecules (for example, thalidomide). One degrader induced rapid, durable and highly specific degradation of AURORA-A. In addition, we found that the degrader complex was stabilized by cooperative binding between AURORA-A and CEREBLON. Degrader-mediated AURORA-A depletion caused an S-phase defect, which is not the cell cycle effect observed upon kinase inhibition, supporting an important non-catalytic function of AURORA-A during DNA replication. AURORA-A degradation induced rampant apoptosis in cancer cell lines and thus represents a versatile starting point for developing new therapeutics to counter AURORA-A function in cancer.


Assuntos
Antineoplásicos/química , Aurora Quinase A/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Proteólise/efeitos dos fármacos , Talidomida/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Aurora Quinase A/genética , Benzazepinas/química , Domínio Catalítico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Desenho de Fármacos , Feminino , Humanos , Masculino , Terapia de Alvo Molecular , Polietilenoglicóis/química , Ligação Proteica , Conformação Proteica
20.
Nat Chem Biol ; 16(10): 1078-1086, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719556

RESUMO

The p53 homolog TAp63α is the transcriptional key regulator of genome integrity in oocytes. After DNA damage, TAp63α is activated by multistep phosphorylation involving multiple phosphorylation events by the kinase CK1, which triggers the transition from a dimeric and inactive conformation to an open and active tetramer that initiates apoptosis. By measuring activation kinetics in ovaries and single-site phosphorylation kinetics in vitro with peptides and full-length protein, we show that TAp63α phosphorylation follows a biphasic behavior. Although the first two CK1 phosphorylation events are fast, the third one, which constitutes the decisive step to form the active conformation, is slow. Structure determination of CK1 in complex with differently phosphorylated peptides reveals the structural mechanism for the difference in the kinetic behavior based on an unusual CK1/TAp63α substrate interaction in which the product of one phosphorylation step acts as an inhibitor for the following one.


Assuntos
Apoptose/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Domínio Catalítico , Dano ao DNA , Feminino , Humanos , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Oócitos , Fosforilação , Conformação Proteica , Fatores de Tempo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA