Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 77: 306-322, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37085141

RESUMO

Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen gas from lignocellulosic biomass under high substrate loading. Possessing an atypical glycolytic pathway which substitutes GTP or pyrophosphate (PPi) for ATP in some steps, including in the energy-investment phase, identification, and manipulation of PPi sources are key to engineering its metabolism. Previous efforts to identify the primary pyrophosphate have been unsuccessful. Here, we explore pyrophosphate metabolism through reconstructing, updating, and analyzing a new genome-scale stoichiometric model for C. thermocellum, iCTH669. Hundreds of changes to the former GEM, iCBI655, including correcting cofactor usages, addressing charge and elemental balance, standardizing biomass composition, and incorporating the latest experimental evidence led to a MEMOTE score improvement to 94%. We found agreement of iCTH669 model predictions across all available fermentation and biomass yield datasets. The feasibility of hundreds of PPi synthesis routes, newly identified and previously proposed, were assessed through the lens of the iCTH669 model including biomass synthesis, tRNA synthesis, newly identified sources, and previously proposed PPi-generating cycles. In all cases, the metabolic cost of PPi synthesis is at best equivalent to investment of one ATP suggesting no direct energetic advantage for the cofactor substitution in C. thermocellum. Even though no unique source of PPi could be gleaned by the model, by combining with gene expression data two most likely scenarios emerge. First, previously investigated PPi sources likely account for most PPi production in wild-type strains. Second, alternate metabolic routes as encoded by iCTH669 can collectively maintain PPi levels even when previously investigated synthesis cycles are disrupted. Model iCTH669 is available at github.com/maranasgroup/iCTH669.


Assuntos
Clostridium thermocellum , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Glicólise/genética , Fermentação , Trifosfato de Adenosina/metabolismo
2.
J Exp Bot ; 73(1): 275-291, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34554248

RESUMO

The growth and development of maize (Zea mays L.) largely depends on its nutrient uptake through the root. Hence, studying its growth, response, and associated metabolic reprogramming to stress conditions is becoming an important research direction. A genome-scale metabolic model (GSM) for the maize root was developed to study its metabolic reprogramming under nitrogen stress conditions. The model was reconstructed based on the available information from KEGG, UniProt, and MaizeCyc. Transcriptomics data derived from the roots of hydroponically grown maize plants were used to incorporate regulatory constraints in the model and simulate nitrogen-non-limiting (N+) and nitrogen-deficient (N-) condition. Model-predicted flux-sum variability analysis achieved 70% accuracy compared with the experimental change of metabolite levels. In addition to predicting important metabolic reprogramming in central carbon, fatty acid, amino acid, and other secondary metabolism, maize root GSM predicted several metabolites (l-methionine, l-asparagine, l-lysine, cholesterol, and l-pipecolate) playing a regulatory role in the root biomass growth. Furthermore, this study revealed eight phosphatidylcholine and phosphatidylglycerol metabolites which, even though not coupled with biomass production, played a key role in the increased biomass production under N-deficient conditions. Overall, the omics-integrated GSM provides a promising tool to facilitate stress condition analysis for maize root and engineer better stress-tolerant maize genotypes.


Assuntos
Nitrogênio , Zea mays , Aminoácidos , Biomassa , Raízes de Plantas , Zea mays/genética
3.
Metabolites ; 14(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057688

RESUMO

Stoichiometric genome-scale metabolic models (generally abbreviated GSM, GSMM, or GEM) have had many applications in exploring phenotypes and guiding metabolic engineering interventions. Nevertheless, these models and predictions thereof can become limited as they do not directly account for protein cost, enzyme kinetics, and cell surface or volume proteome limitations. Lack of such mechanistic detail could lead to overly optimistic predictions and engineered strains. Initial efforts to correct these deficiencies were by the application of precursor tools for GSMs, such as flux balance analysis with molecular crowding. In the past decade, several frameworks have been introduced to incorporate proteome-related limitations using a genome-scale stoichiometric model as the reconstruction basis, which herein are called resource allocation models (RAMs). This review provides a broad overview of representative or commonly used existing RAM frameworks. This review discusses increasingly complex models, beginning with stoichiometric models to precursor to RAM frameworks to existing RAM frameworks. RAM frameworks are broadly divided into two categories: coarse-grained and fine-grained, with different strengths and challenges. Discussion includes pinpointing their utility, data needs, highlighting framework strengths and limitations, and appropriateness to various research endeavors, largely through contrasting their mathematical frameworks. Finally, promising future applications of RAMs are discussed.

4.
STAR Protoc ; 2(4): 100820, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585158

RESUMO

Synthetic biology often relies on the design of genetic circuits, utilizing "bioparts" (modular DNA pieces) to accomplish desired responses to external stimuli. While such designs are usually intuited, detailed here is a computational approach to synthetic biology design and modeling using optimization-based tools named Eukaryotic Genetic Circuit Design and Modeling. These allow for designing and subsequent screening of genetic circuits to increase the chances of in vivo success and contribute to the development of an application development pipeline. For complete details on the use and execution of this protocol, please refer to Schroeder, Baber, and Saha (2021).


Assuntos
Redes Reguladoras de Genes/genética , Modelos Genéticos , Software , Biologia Sintética/métodos , Humanos
5.
iScience ; 24(9): 103000, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34622181

RESUMO

Synthetic biology has the potential to revolutionize the biotech industry and our everyday lives and is already making an impact. Developing synthetic biology applications requires several steps including design and modeling efforts which may be performed by in silico tools. In this work, we have developed two such tools, Eukaryotic Genetic Circuit Design (EuGeneCiD) and Modeling (EuGeneCiM), which use optimization concepts and bioparts including promotors, transcripts, and terminators in designing and modeling genetic circuits. EuGeneCiD and EuGeneCiM preclude problematic designs leading to future synthetic biology application development pipelines. EuGeneCiD and EuGeneCiM are applied to developing 30 basic logic gates as genetic circuit conceptualizations which respond to heavy metal ions pairs as input signals for Arabidopsis thaliana. For each conceptualization, hundreds of potential solutions were designed and modeled. Demonstrating its time-dependence and the importance of including enzyme and transcript degradation in modeling, EuGeneCiM is used to model a repressilator circuit.

6.
STAR Protoc ; 1(2): 100105, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32935086

RESUMO

Exophiala dermatitidis is a polyextremotolerant fungus with a small genome, thus suitable as a model system for melanogenesis and carotenogensis. A genome-scale model, iEde2091, is reconstructed to increase metabolic understanding and used in a shadow price analysis of pigments, as detailed here. Important to this reconstruction is OptFill, a recently developed alternative gap-filling method useful in the holistic and conservative reconstruction of genome-scale models of metabolism, particularly for understudied organisms like E. dermatitidis where gaps in metabolic knowledge are abundant. For complete details on the use and execution of this protocol, please refer to Schroeder and Saha (2020) and Schroeder et al. (2020).


Assuntos
Biologia Computacional/métodos , Exophiala/genética , Análise de Sequência de DNA/métodos , Carotenoides/química , Exophiala/metabolismo , Exophiala/patogenicidade , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Melaninas/biossíntese , Melaninas/genética , Escarro/microbiologia
7.
Sci Rep ; 10(1): 9241, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514037

RESUMO

In this work we introduce the generalized Optimization- and explicit Runge-Kutta-based Approach (ORKA) to perform dynamic Flux Balance Analysis (dFBA), which is numerically more accurate and computationally tractable than existing approaches. ORKA is applied to a four-tissue (leaf, root, seed, and stem) model of Arabidopsis thaliana, p-ath773, uniquely capturing the core-metabolism of several stages of growth from seedling to senescence at hourly intervals. Model p-ath773 has been designed to show broad agreement with published plant-scale properties such as mass, maintenance, and senescence, yet leaving reaction-level behavior unconstrainted. Hence, it serves as a framework to study the reaction-level behavior necessary for observed plant-scale behavior. Two such case studies of reaction-level behavior include the lifecycle progression of sulfur metabolism and the diurnal flow of water throughout the plant. Specifically, p-ath773 shows how transpiration drives water flow through the plant and how water produced by leaf tissue metabolism may contribute significantly to transpired water. Investigation of sulfur metabolism elucidates frequent cross-compartment exchange of a standing pool of amino acids which is used to regulate the proton flow. Overall, p-ath773 and ORKA serve as scaffolds for dFBA-based lifecycle modeling of plants and other systems to further broaden the scope of in silico metabolic investigation.

8.
iScience ; 23(1): 100783, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31954977

RESUMO

Stoichiometric metabolic modeling, particularly genome-scale models (GSMs), is now an indispensable tool for systems biology. The model reconstruction process typically involves collecting information from public databases; however, incomplete systems knowledge leaves gaps in any reconstruction. Current tools for addressing gaps use databases of biochemical functionalities to address gaps on a per-metabolite basis and can provide multiple solutions but cannot avoid thermodynamically infeasible cycles (TICs), invariably requiring lengthy manual curation. To address these limitations, this work introduces an optimization-based multi-step method named OptFill, which performs TIC-avoiding whole-model gapfilling. We applied OptFill to three fictional prokaryotic models of increasing sizes and to a published GSM of Escherichia coli, iJR904. This application resulted in holistic and infeasible cycle-free gapfilling solutions. In addition, OptFill can be adapted to automate inherent TICs identification in any GSM. Overall, OptFill can address critical issues in automated development of high-quality GSMs.

9.
iScience ; 23(4): 100980, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32240950

RESUMO

The polyextremotolerant black yeast Exophiala dermatitidis is a tractable model system for investigation of adaptations that support growth under extreme conditions. Foremost among these adaptations are melanogenesis and carotenogenesis. A particularly important question is their metabolic production cost. However, investigation of this issue has been hindered by a relatively poor systems-level understanding of E. dermatitidis metabolism. To address this challenge, a genome-scale model (iEde2091) was developed. Using iEde2091, carotenoids were found to be more expensive to produce than melanins. Given their overlapping protective functions, this suggests that carotenoids have an underexplored yet important role in photo-protection. Furthermore, multiple defensive pigments with overlapping functions might allow E. dermatitidis to minimize cost. Because iEde2091 revealed that E. dermatitidis synthesizes the same melanins as humans and the active sites of the key tyrosinase enzyme are highly conserved this model may enable a broader understanding of melanin production across kingdoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA