Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 70(6): 1025-1037.e5, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29861160

RESUMO

When faced with proteotoxic stress, cells mount adaptive responses to eliminate aberrant proteins. Adaptive responses increase the expression of protein folding and degradation factors to enhance the cellular quality control machinery. However, it is unclear whether and how this augmented machinery acquires new activities during stress. Here, we uncover a regulatory cascade in budding yeast that consists of the hydrophilin protein Roq1/Yjl144w, the HtrA-type protease Ynm3/Nma111, and the ubiquitin ligase Ubr1. Various stresses stimulate ROQ1 transcription. The Roq1 protein is cleaved by Ynm3. Cleaved Roq1 interacts with Ubr1, transforming its substrate specificity. Altered substrate recognition by Ubr1 accelerates proteasomal degradation of misfolded as well as native proteins at the endoplasmic reticulum membrane and in the cytosol. We term this pathway stress-induced homeostatically regulated protein degradation (SHRED) and propose that it promotes physiological adaptation by reprogramming a key component of the quality control machinery.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Proteólise , Saccharomyces cerevisiae/enzimologia , Serina Endopeptidases/metabolismo , Estresse Fisiológico/fisiologia , Especificidade por Substrato , Ubiquitina/metabolismo
2.
EMBO J ; 40(22): e107958, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34617598

RESUMO

Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1-Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático , Regulação Fúngica da Expressão Gênica , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Compostos Orgânicos/metabolismo , Fosfatidato Fosfatase/genética , Fosforilação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas
3.
EMBO J ; 39(2): e102586, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31802527

RESUMO

ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Membranas Intracelulares/metabolismo , Microautofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homeostase , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
J Cell Sci ; 133(17)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907930

RESUMO

Autophagy is fundamental for cell and organismal health. Two types of autophagy are conserved in eukaryotes: macroautophagy and microautophagy. During macroautophagy, autophagosomes deliver cytoplasmic constituents to endosomes or lysosomes, whereas during microautophagy lytic organelles take up cytoplasm directly. While macroautophagy has been investigated extensively, microautophagy has received much less attention. Nonetheless, it has become clear that microautophagy has a broad range of functions in biosynthetic transport, metabolic adaptation, organelle remodeling and quality control. This Review discusses the selective and non-selective microautophagic processes known in yeast, plants and animals. Based on the molecular mechanisms for the uptake of microautophagic cargo into lytic organelles, I propose to distinguish between fission-type microautophagy, which depends on ESCRT proteins, and fusion-type microautophagy, which requires the core autophagy machinery and SNARE proteins. Many questions remain to be explored, but the functional versatility and mechanistic diversity of microautophagy are beginning to emerge.


Assuntos
Lisossomos , Microautofagia , Animais , Autofagia , Endossomos , Saccharomyces cerevisiae/genética
7.
J Cell Sci ; 127(Pt 18): 4078-88, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25052096

RESUMO

Selective autophagy of damaged or redundant organelles is an important mechanism for maintaining cell homeostasis. We found previously that endoplasmic reticulum (ER) stress in the yeast Saccharomyces cerevisiae causes massive ER expansion and triggers the formation of large ER whorls. Here, we show that stress-induced ER whorls are selectively taken up into the vacuole, the yeast lysosome, by a process termed ER-phagy. Import into the vacuole does not involve autophagosomes but occurs through invagination of the vacuolar membrane, indicating that ER-phagy is topologically equivalent to microautophagy. Even so, ER-phagy requires neither the core autophagy machinery nor several other proteins specifically implicated in microautophagy. Thus, autophagy of ER whorls represents a distinct type of organelle-selective autophagy. Finally, we provide evidence that ER-phagy degrades excess ER membrane, suggesting that it contributes to cell homeostasis by controlling organelle size.


Assuntos
Autofagia , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Estresse do Retículo Endoplasmático , Lisossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
8.
EMBO J ; 30(21): 4465-78, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21926971

RESUMO

Both autophagy and apoptosis are tightly regulated processes playing a central role in tissue homeostasis. Bax inhibitor 1 (BI-1) is a highly conserved protein with a dual role in apoptosis and endoplasmic reticulum (ER) stress signalling through the regulation of the ER stress sensor inositol requiring kinase 1 α (IRE1α). Here, we describe a novel function of BI-1 in the modulation of autophagy. BI-1-deficient cells presented a faster and stronger induction of autophagy, increasing LC3 flux and autophagosome formation. These effects were associated with enhanced cell survival under nutrient deprivation. Repression of autophagy by BI-1 was dependent on cJun-N terminal kinase (JNK) and IRE1α expression, possibly due to a displacement of TNF-receptor associated factor-2 (TRAF2) from IRE1α. Targeting BI-1 expression in flies altered autophagy fluxes and salivary gland degradation. BI-1 deficiency increased flies survival under fasting conditions. Increased expression of autophagy indicators was observed in the liver and kidney of bi-1-deficient mice. In summary, we identify a novel function of BI-1 in multicellular organisms, and suggest a critical role of BI-1 as a stress integrator that modulates autophagy levels and other interconnected homeostatic processes.


Assuntos
Autofagia/genética , Endorribonucleases/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/genética , Ácidos/metabolismo , Animais , Sobrevivência Celular/genética , Células Cultivadas , Drosophila/genética , Endorribonucleases/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Organismos Geneticamente Modificados , Fagossomos/genética , Fagossomos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Inanição/metabolismo , Vesículas Transportadoras/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
9.
FASEB J ; 24(10): 4000-19, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20570965

RESUMO

Many proteins mature within the secretory pathway by the acquisition of glycans. Failure to maintain the proper distribution of the glycosylation machinery might lead to disease. High expression levels of the ubiquitous Golgi protein estrogen receptor-binding fragment-associated gene 9 (EBAG9) in human tumors correlate with poor clinical prognosis, and EBAG9 overexpression in epithelial cell lines induces truncated glycans, typical of many carcinomas. Here, we addressed the pathogenetic link between EBAG9 expression and the alteration of the cellular glycome. We applied confocal microscopy, live imaging, pulse-chase labeling in conjunction with immunoprecipitation, and enzymatic activity assays in a variety of EBAG9-overexpressing or depleted epithelial tumor cell lines. EBAG9 shuttles between the ER-Golgi intermediate compartment and the cis-Golgi, and we demonstrate association of EBAG9 with coat protein complex I (COPI)-coated transport vesicles. EBAG9 overexpression imposes delay of endoplasmic reticulum-to-Golgi transport and mislocalizes components of the ER quality control and glycosylation machinery. Conversely, EBAG9 down-regulation accelerates glycoprotein transport through the Golgi and enhances mannosidase activity. Thus, EBAG9 acts as a negative regulator of a COPI-dependent ER-to-Golgi transport pathway in epithelial cells and represents a novel pathogenetic principle in which interference with intracellular membrane trafficking results in the emergence of a tumor-associated glycome.


Assuntos
Antígenos de Neoplasias/fisiologia , Complexo I de Proteína do Envoltório/fisiologia , Glicoproteínas/metabolismo , Western Blotting , Linhagem Celular Tumoral , Imunofluorescência , Humanos
10.
J Cell Biol ; 172(7): 963-5, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16567497

RESUMO

The model that glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) take a direct transport route to the apical membrane of epithelial cells has recently been challenged. In this issue, Paladino et al. (p. 1023) and Hua et al. (p. 1035) show that the original view nevertheless holds. This closes a chapter in the winding story of GPI-AP trafficking but opens another phase, as the controversy has stimulated the development of new methodology.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Proteínas de Membrana/metabolismo , Animais , Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Endocitose/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Complexo de Golgi/fisiologia , Citometria de Varredura a Laser , Modelos Biológicos , Transporte Proteico/fisiologia
11.
Autophagy ; 16(4): 763-764, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31958035

RESUMO

Changing conditions necessitate cellular adaptation, which frequently entails adjustment of organelle size and shape. The endoplasmic reticulum (ER) is an organelle of exceptional morphological plasticity. In budding yeast, ER stress triggers the de novo formation of ER subdomains called ER whorls. These whorls are selectively degraded by a poorly defined type of microautophagy. We recently showed that ESCRT proteins are essential for microautophagic uptake of ER whorls into lysosomes, likely by mediating the final scission of the lysosomal membrane. Furthermore, ER-selective microautophagy acts in parallel with ER-selective macroautophagy. The molecular machineries for these two types of autophagy are distinct and their contributions to ER turnover vary according to conditions, suggesting that they serve different functions. Our study provides evidence for a direct role of ESCRTs in microautophagy and extends our understanding of how autophagy promotes organelle homeostasis.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Microautofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Homeostase/fisiologia , Humanos , Membranas Intracelulares
12.
Elife ; 82019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30865586

RESUMO

Misfolded proteins in the endoplasmic reticulum (ER) activate the unfolded protein response (UPR), which enhances protein folding to restore homeostasis. Additional pathways respond to ER stress, but how they help counteract protein misfolding is incompletely understood. Here, we develop a titratable system for the induction of ER stress in yeast to enable a genetic screen for factors that augment stress resistance independently of the UPR. We identify the proteasome biogenesis regulator Rpn4 and show that it cooperates with the UPR. Rpn4 abundance increases during ER stress, first by a post-transcriptional, then by a transcriptional mechanism. Induction of RPN4 transcription is triggered by cytosolic mislocalization of secretory proteins, is mediated by multiple signaling pathways and accelerates clearance of misfolded proteins from the cytosol. Thus, Rpn4 and the UPR are complementary elements of a modular cross-compartment response to ER stress.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/enzimologia , Biogênese de Organelas
13.
Elife ; 82019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30785397

RESUMO

Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.


Assuntos
Arabidopsis/fisiologia , Difosfatos/metabolismo , Estresse Fisiológico , Sumoilação , Aclimatação , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Temperatura Alta , Pirofosfatase Inorgânica/metabolismo , Isoenzimas/metabolismo
14.
Cytokine ; 43(2): 143-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18603443

RESUMO

Multifunctional T cells expressing several cytokines in parallel are thought to play a crucial role in protection against different infections. To characterize T cell cytokine patterns associated with disease and protection in Mycobacterium tuberculosis infection we determined the expression of IFNgamma, IL-2, TNFalpha, and GM-CSF in T cell subpopulations from children with tuberculosis (TB) and healthy latently M. tuberculosis-infected children (LTBI) after short-term in vitro restimulation. We identified CD4(+) effector memory T cells (T(EM)) as the major source of all measured cytokines after antigen-specific restimulation. T(EM) from children with TB expressed higher proportions of IFNgamma, TNFalpha, and IL-2 after Mtb restimulation while no differences were detected for GM-CSF between both study groups. GM-CSF secretion strongly depended on antigen-specific stimulation. Analyses of multiple cytokine patterns revealed that the majority of GM-CSF-positive M. tuberculosis-specific memory T cells coexpressed IFNgamma and TNFalpha therefore showing a characteristic feature of multifunctional T cells. We conclude that children with active TB possess higher proportions of IFNgamma-, TNFalpha-, and/or IL-2-positive T(EM) than children with LTBI while GM-CSF coexpression reveals a novel subpopulation within CD4(+) memory T cells not increased in children with active TB.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Memória Imunológica/imunologia , Interferon gama/imunologia , Mycobacterium tuberculosis/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Antígenos Comuns de Leucócito/imunologia , Masculino , Tuberculose/imunologia
15.
Nat Cell Biol ; 18(11): 1118-1119, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27784902

RESUMO

The endoplasmic reticulum (ER) is the largest membrane-bound organelle in cells, and its size needs to be carefully controlled. Downsizing the ER by autophagy is now shown to involve Sec62, a protein that also helps to build up the organelle. This link suggests a molecular switch for ER size control.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Organelas/metabolismo , Animais , Humanos , Transporte Proteico
17.
BMC Mol Biol ; 4: 6, 2003 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-12769834

RESUMO

BACKGROUND: The regulation of the immediate-early gene c-fos serves as a paradigm for signal-activated gene induction. Lysophosphatidic acid is a potent serum-borne mitogen able to induce c-fos. RESULTS: Analysing the signalling events following stimulation of mouse embryonic stem cells with serum and lysophosphatidic acid, we show that the extracellular signal-regulated kinase (ERK) pathway is involved in mediating c-fos induction. We demonstrate that the ERK-activated kinase MSK1 is required for full c-fos promoter activation, as well as for the phosphorylation of cAMP-responsive element (CRE) binding proteins. We propose that MSK1 contributes to ERK-mediated c-fos promoter activation by targeting CRE binding proteins. CONCLUSION: These results show that MSK1 is an important ERK-activated mediator of mitogen-stimulated c-fos induction. In addition, they indicate that MSK1 could act through CRE binding proteins to achieve c-fos promoter activation. Thus, they further our understanding of the complex regulation of the model immediate-early gene c-fos.


Assuntos
Lisofosfolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-fos/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Elemento de Resposta Sérica/fisiologia , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/enzimologia , Células-Tronco/metabolismo
18.
Mol Biol Cell ; 25(22): 3686-98, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25143397

RESUMO

Flagellar length control in Chlamydomonas reinhardtii provides a simple model system in which to investigate the general question of how cells regulate organelle size. Previous work demonstrated that Chlamydomonas cytoplasm contains a pool of flagellar precursor proteins sufficient to assemble a half-length flagellum and that assembly of full-length flagella requires synthesis of additional precursors to augment the preexisting pool. The regulatory systems that control the synthesis and regeneration of this pool are not known, although transcriptional regulation clearly plays a role. We used quantitative analysis of length distributions to identify candidate genes controlling pool regeneration and found that a mutation in the p80 regulatory subunit of katanin, encoded by the PF15 gene in Chlamydomonas, alters flagellar length by changing the kinetics of precursor pool utilization. This finding suggests a model in which flagella compete with cytoplasmic microtubules for a fixed pool of tubulin, with katanin-mediated severing allowing easier access to this pool during flagellar assembly. We tested this model using a stochastic simulation that confirms that cytoplasmic microtubules can compete with flagella for a limited tubulin pool, showing that alteration of cytoplasmic microtubule severing could be sufficient to explain the effect of the pf15 mutations on flagellar length.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Flagelos/genética , Modelos Estatísticos , Precursores de Proteínas/genética , Subunidades Proteicas/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Simulação por Computador , Flagelos/metabolismo , Flagelos/ultraestrutura , Regulação da Expressão Gênica , Katanina , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Tamanho das Organelas , Precursores de Proteínas/metabolismo , Subunidades Proteicas/metabolismo , Transdução de Sinais , Processos Estocásticos , Transcrição Gênica , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
20.
J Cell Biol ; 198(3): 405-20, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22869600

RESUMO

Eisosomes are stable domains at the plasma membrane of the budding yeast Saccharomyces cerevisiae and have been proposed to function in endocytosis. Eisosomes are composed of two main cytoplasmic proteins, Pil1 and Lsp1, that form a scaffold around furrow-like plasma membrane invaginations. We show here that the poorly characterized eisosome protein Seg1/Ymr086w is important for eisosome biogenesis and architecture. Seg1 was required for efficient incorporation of Pil1 into eisosomes and the generation of normal plasma membrane furrows. Seg1 preceded Pil1 during eisosome formation and established a platform for the assembly of other eisosome components. This platform was further shaped and stabilized upon the arrival of Pil1 and Lsp1. Moreover, Seg1 abundance controlled the shape of eisosomes by determining their length. Similarly, the Schizosaccharomyces pombe Seg1-like protein Sle1 was necessary to generate the filamentous eisosomes present in fission yeast. The function of Seg1 in the stepwise biogenesis of eisosomes reveals striking architectural similarities between eisosomes in yeast and caveolae in mammals.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Fosfoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Animais , Membrana Celular/metabolismo , Citoplasma/metabolismo , Endocitose , Proteínas de Fluorescência Verde/química , Imuno-Histoquímica , Lipossomos/química , Proteínas de Membrana/fisiologia , Microscopia Confocal/métodos , Microscopia Eletrônica/métodos , Estrutura Terciária de Proteína , Proteômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA