Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 28(2): 121-6, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24449268

RESUMO

The nuclear envelope is a subdomain of the endoplasmic reticulum (ER). Here we characterize CNEP-1 (CTD [C-terminal domain] nuclear envelope phosphatase-1), a nuclear envelope-enriched activator of the ER-associated phosphatidic acid phosphatase lipin that promotes synthesis of major membrane phospholipids over phosphatidylinositol (PI). CNEP-1 inhibition led to ectopic ER sheets in the vicinity of the nucleus that encased the nuclear envelope and interfered with nuclear envelope breakdown (NEBD) during cell division. Reducing PI synthesis suppressed these phenotypes, indicating that CNEP-1 spatially regulates phospholipid flux, biasing it away from PI production in the vicinity of the nuclear envelope to prevent excess ER sheet formation and NEBD defects.


Assuntos
Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Membrana Nuclear/metabolismo , Fosfolipídeos/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Núcleo Celular/metabolismo , Embrião não Mamífero , Compostos Orgânicos/metabolismo , Fosfoproteínas Fosfatases/metabolismo
2.
EMBO J ; 34(6): 811-27, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25586378

RESUMO

In mammalian cells, cargo-laden secretory vesicles leave the endoplasmic reticulum (ER) en route to ER-Golgi intermediate compartments (ERGIC) in a manner dependent on the COPII coat complex. We report here that COPII-coated transport carriers traverse a submicron, TFG (Trk-fused gene)-enriched zone at the ER/ERGIC interface. The architecture of TFG complexes as determined by three-dimensional electron microscopy reveals the formation of flexible, octameric cup-like structures, which are able to self-associate to generate larger polymers in vitro. In cells, loss of TFG function dramatically slows protein export from the ER and results in the accumulation of COPII-coated carriers throughout the cytoplasm. Additionally, the tight association between ER and ERGIC membranes is lost in the absence of TFG. We propose that TFG functions at the ER/ERGIC interface to locally concentrate COPII-coated transport carriers and link exit sites on the ER to ERGIC membranes. Our findings provide a new mechanism by which COPII-coated carriers are retained near their site of formation to facilitate rapid fusion with neighboring ERGIC membranes upon uncoating, thereby promoting interorganellar cargo transport.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas/metabolismo , Via Secretória/fisiologia , Rede trans-Golgi/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Chlorocebus aethiops , Dicroísmo Circular , Eletroporação , Recuperação de Fluorescência Após Fotodegradação , Imunofluorescência , Humanos , Imuno-Histoquímica , Microscopia Eletrônica , RNA Interferente Pequeno/genética
3.
Crit Rev Biochem Mol Biol ; 49(3): 242-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24456136

RESUMO

The manipulation and reorganization of lipid bilayers are required for diverse cellular processes, ranging from organelle biogenesis to cytokinetic abscission, and often involves transient membrane disruption. A set of membrane-associated proteins collectively known as the endosomal sorting complex required for transport (ESCRT) machinery has been implicated in membrane scission steps, which transform a single, continuous bilayer into two distinct bilayers, while simultaneously segregating cargo throughout the process. Components of the ESCRT pathway, which include 5 distinct protein complexes and an array of accessory factors, each serve discrete functions. This review focuses on the molecular mechanisms by which the ESCRT proteins facilitate cargo sequestration and membrane remodeling and highlights their unique roles in cellular homeostasis.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Animais , Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte/análise , Humanos , Modelos Moleculares , Transporte Proteico , Ubiquitina/metabolismo
4.
Biochem J ; 472(3): 339-52, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26443865

RESUMO

Adherens junctions play key roles in mediating cell-cell contacts during tissue development. In Caenorhabditis elegans embryos, the cadherin-catenin complex (CCC), composed of the classical cadherin HMR-1 and members of three catenin families, HMP-1, HMP-2 and JAC-1, is necessary for normal blastomere adhesion, gastrulation, ventral enclosure of the epidermis and embryo elongation. Disruption of CCC assembly or function results in embryonic lethality. Previous work suggests that components of the CCC are subject to phosphorylation. However, the identity of phosphorylated residues in CCC components and their contributions to CCC stability and function in a living organism remain speculative. Using mass spectrometry, we systematically identify phosphorylated residues in the essential CCC subunits HMR-1, HMP-1 and HMP-2 in vivo. We demonstrate that HMR-1/cadherin phosphorylation occurs on three sites within its ß-catenin binding domain that each contributes to CCC assembly on lipid bilayers. In contrast, phosphorylation of HMP-2/ß-catenin inhibits its association with HMR-1/cadherin in vitro, suggesting a role in CCC disassembly. Although HMP-1/α-catenin is also phosphorylated in vivo, phosphomimetic mutations do not affect its ability to associate with other CCC components or interact with actin in vitro. Collectively, our findings support a model in which distinct phosphorylation events contribute to rapid CCC assembly and disassembly, both of which are essential for morphogenetic rearrangements during development.


Assuntos
Blastômeros/metabolismo , Caderinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Cateninas/metabolismo , Proteínas do Citoesqueleto/metabolismo , alfa Catenina/metabolismo , Animais , Caderinas/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cateninas/genética , Proteínas do Citoesqueleto/genética , Embrião não Mamífero/embriologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação/fisiologia , alfa Catenina/genética
5.
Biochem J ; 466(3): 625-37, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25588614

RESUMO

Members of the endosomal sorting complex required for transport (ESCRT) machinery function in membrane remodelling processes during multivesicular endosome (MVE) biogenesis, cytokinesis, retroviral budding and plasma membrane repair. During luminal vesicle formation at endosomes, the ESCRT-II complex and the ESCRT-III subunit vacuolar protein sorting (VPS)-20 play a specific role in regulating assembly of ESCRT-III filaments, which promote vesicle scission. Previous work suggests that Vps20 isoforms, like other ESCRT-III subunits, exhibits an auto-inhibited closed conformation in solution and its activation depends on an association with ESCRT-II specifically at membranes [1]. However, we show in the present study that Caenorhabditis elegans ESCRT-II and VPS-20 interact directly in solution, both in cytosolic cell extracts and in using recombinant proteins in vitro. Moreover, we demonstrate that purified VPS-20 exhibits an open extended conformation, irrespective of ESCRT-II binding, in contrast with the closed auto-inhibited architecture of another ESCRT-III subunit, VPS-24. Our data argue that individual ESCRT-III subunits adopt distinct conformations, which are tailored for their specific functions during ESCRT-mediated membrane reorganization events.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Animais , Caenorhabditis elegans , Humanos , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia
6.
Proc Natl Acad Sci U S A ; 110(13): 5091-6, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479643

RESUMO

Hereditary spastic paraplegias are a clinically and genetically heterogeneous group of gait disorders. Their pathological hallmark is a length-dependent distal axonopathy of nerve fibers in the corticospinal tract. Involvement of other neurons can cause additional neurological symptoms, which define a diverse set of complex hereditary spastic paraplegias. We present two siblings who have the unusual combination of early-onset spastic paraplegia, optic atrophy, and neuropathy. Genome-wide SNP-typing, linkage analysis, and exome sequencing revealed a homozygous c.316C>T (p.R106C) variant in the Trk-fused gene (TFG) as the only plausible mutation. Biochemical characterization of the mutant protein demonstrated a defect in its ability to self-assemble into an oligomeric complex, which is critical for normal TFG function. In cell lines, TFG inhibition slows protein secretion from the endoplasmic reticulum (ER) and alters ER morphology, disrupting organization of peripheral ER tubules and causing collapse of the ER network onto the underlying microtubule cytoskeleton. The present study provides a unique link between altered ER architecture and neurodegeneration.


Assuntos
Axônios/metabolismo , Retículo Endoplasmático/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Substituição de Aminoácidos , Animais , Axônios/patologia , Linhagem Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Éxons/genética , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patologia , Proteínas do Tecido Nervoso/genética , Linhagem , Proteínas/genética , Ratos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Xenopus , Peixe-Zebra
7.
J Biol Chem ; 287(46): 38824-34, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23007400

RESUMO

Phospholipase A(2) activity plays key roles in generating lipid second messengers and regulates membrane topology through the generation of asymmetric lysophospholipids. In particular, the Group VIA phospholipase A(2) (GVIA-iPLA(2)) subfamily of enzymes functions independently of calcium within the cytoplasm of cells and has been implicated in numerous cellular processes, including proliferation, apoptosis, and membrane transport steps. However, mechanisms underlying the spatial and temporal regulation of these enzymes have remained mostly unexplored. Here, we examine the subset of Caenorhabditis elegans lipases that harbor a consensus motif common to members of the GVIA-iPLA(2) subfamily. Based on sequence homology, we identify IPLA-1 as the closest C. elegans homolog of human GVIA-iPLA(2) enzymes and use a combination of liposome interaction studies to demonstrate a role for acidic phospholipids in regulating GVIA-iPLA(2) function. Our studies indicate that IPLA-1 binds directly to multiple acidic phospholipids, including phosphatidylserine, phosphatidylglycerol, cardiolipin, phosphatidic acid, and phosphorylated derivatives of phosphatidylinositol. Moreover, the presence of these acidic lipids dramatically elevates the specific activity of IPLA-1 in vitro. We also found that the addition of ATP and ADP promote oligomerization of IPLA-1, which probably underlies the stimulatory effect of nucleotides on its activity. We propose that membrane composition and the presence of nucleotides play key roles in recruiting and modulating GVIA-iPLA(2) activity in cells.


Assuntos
Nucleotídeos/química , Fosfolipases A2 Independentes de Cálcio/metabolismo , Fosfolipídeos/química , Animais , Caenorhabditis elegans , Calorimetria/métodos , Membrana Celular/metabolismo , Dimerização , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Genoma , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipossomos/química , Lipossomos/metabolismo , Mutação , Fosfolipases/metabolismo , Fosfolipases A2 Independentes de Cálcio/química , Fosfolipídeos/metabolismo , Ligação Proteica
8.
Subcell Biochem ; 59: 35-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22374087

RESUMO

Phosphatidylinositol (PI) is distinct from other phospholipids, possessing a head group that can be modified by phosphorylation at multiple positions to generate unique signaling molecules collectively known as phosphoinositides. The set of kinases and phosphatases that regulate PI metabolism are conserved throughout eukaryotic evolution, and numerous studies have demonstrated that phosphoinositides regulate a diverse spectrum of cellular processes, including vesicle transport, cell proliferation, and cytoskeleton organization. Over the past two decades, nearly all PI derivatives have been shown to interact directly with cellular proteins to affect their localization and/or activity. Additionally, there is growing evidence, which suggests that phosphoinositides may also affect local membrane topology. Here, we focus on the role of phosphoinositides in membrane trafficking and underscore the significant role that yeast has played in the field.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transporte Biológico , Proteínas de Transporte/química , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Estrutura Terciária de Proteína
9.
J Biol Chem ; 286(39): 34262-70, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21835927

RESUMO

The scission of membranes necessary for vesicle biogenesis and cytokinesis is mediated by cytoplasmic proteins, which include members of the ESCRT (endosomal sorting complex required for transport) machinery. During the formation of intralumenal vesicles that bud into multivesicular endosomes, the ESCRT-II complex initiates polymerization of ESCRT-III subunits essential for membrane fission. However, mechanisms underlying the spatial and temporal regulation of this process remain unclear. Here, we show that purified ESCRT-II binds to the ESCRT-III subunit Vps20 on chemically defined membranes in a curvature-dependent manner. Using a combination of liposome co-flotation assays, fluorescence-based liposome interaction studies, and high-resolution atomic force microscopy, we found that the interaction between ESCRT-II and Vps20 decreases the affinity of ESCRT-II for flat lipid bilayers. We additionally demonstrate that ESCRT-II and Vps20 nucleate flexible filaments of Vps32 that polymerize specifically along highly curved membranes as a single string of monomers. Strikingly, Vps32 filaments are shown to modulate membrane dynamics in vitro, a prerequisite for membrane scission events in cells. We propose that a curvature-dependent assembly pathway provides the spatial regulation of ESCRT-III to fuse juxtaposed bilayers of elevated curvature.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Membrana Celular/química , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Bicamadas Lipídicas/química , Lipossomos/química , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
10.
J Biol Chem ; 286(11): 9636-45, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21193406

RESUMO

The ESCRT machinery consists of multiple protein complexes that collectively participate in the biogenesis of multivesicular endosomes (MVEs). The ESCRT-0 complex is composed of two subunits, Hrs and STAM, both of which can engage ubiquitinylated substrates destined for lysosomal degradation. Here, we conduct a comprehensive analysis of ESCRT-0:ubiquitin interactions using isothermal titration calorimetry and define the affinity of each ubiquitin-binding domain (UBD) within the intact ESCRT-0 complex. Our data demonstrate that ubiquitin binding is non-cooperative between the ESCRT-0 UBDs. Additionally, our findings show that the affinity of the Hrs double ubiquitin interacting motif (DUIM) for ubiquitin is more than 2-fold greater than that of UBDs found in STAM, suggesting that Hrs functions as the major ubiquitin-binding protein in ESCRT-0. In vivo, Hrs and STAM localize to endosomal membranes. To study recombinant ESCRT-0 assembly on lipid bilayers, we used atomic force microscopy. Our data show that ESCRT-0 forms mostly heterodimers and heterotetramers of Hrs and STAM when analyzed in the presence of membranes. Consistent with these findings, hydrodynamic analysis of endogenous ESCRT-0 indicates that it exists largely as a heterotetrameric complex of its two subunits. Based on these data, we present a revised model for ESCRT-0 function in cargo recruitment and concentration at the endosome.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Motivos de Aminoácidos , Animais , Transporte Biológico/fisiologia , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
11.
Methods Mol Biol ; 1998: 189-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31250303

RESUMO

Our fundamental understanding of the roles played by the endosomal sorting complex required for transport (ESCRT) machinery in cells comes from interdisciplinary approaches that combine numerous in vivo and in vitro techniques. Here, we focus on methods used to biochemically characterize Caenorhabditis elegans ESCRT components in vitro, including the production and characterization of recombinant ESCRT complexes and their use in membrane interaction studies. Key methodologies used include gel filtration chromatography, glycerol density gradient analysis, multi-angle light scattering, liposome co-flotation, and single-liposome fluorescence microscopy. Collectively, these studies have enabled us to define subunit stoichiometry of soluble C. elegans ESCRT complexes and to demonstrate that the late-acting ESCRT-III complex facilitates membrane bending and remodeling, at least in part by virtue of its ability to sense the curvature of lipid bilayers.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Bicamadas Lipídicas/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , Cromatografia em Gel/métodos , Difusão Dinâmica da Luz/métodos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/isolamento & purificação , Lipossomos/metabolismo , Microscopia de Fluorescência/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
12.
Cell Rep ; 24(9): 2248-2260, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30157421

RESUMO

Length-dependent axonopathy of the corticospinal tract causes lower limb spasticity and is characteristic of several neurological disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis. Mutations in Trk-fused gene (TFG) have been implicated in both diseases, but the pathomechanisms by which these alterations cause neuropathy remain unclear. Here, we biochemically and genetically define the impact of a mutation within the TFG coiled-coil domain, which underlies early-onset forms of HSP. We find that the TFG (p.R106C) mutation alters compaction of TFG ring complexes, which play a critical role in the export of cargoes from the endoplasmic reticulum (ER). Using CRISPR-mediated genome editing, we engineered human stem cells that express the mutant form of TFG at endogenous levels and identified specific defects in secretion from the ER and axon fasciculation following neuronal differentiation. Together, our data highlight a key role for TFG-mediated protein transport in the pathogenesis of HSP.


Assuntos
Fasciculação Axônica/genética , Proteínas/genética , Proteínas/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Axônios/metabolismo , Axônios/patologia , Sequência de Bases , Humanos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Transporte Proteico , Paraplegia Espástica Hereditária/patologia
13.
J Cell Biol ; 206(6): 763-77, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25202029

RESUMO

The scission of biological membranes is facilitated by a variety of protein complexes that bind and manipulate lipid bilayers. ESCRT-III (endosomal sorting complex required for transport III) filaments mediate membrane scission during the ostensibly disparate processes of multivesicular endosome biogenesis, cytokinesis, and retroviral budding. However, mechanisms by which ESCRT-III subunits assemble into a polymer remain unknown. Using cryogenic electron microscopy (cryo-EM), we found that the full-length ESCRT-III subunit Vps32/CHMP4B spontaneously forms single-stranded spiral filaments. The resolution afforded by two-dimensional cryo-EM combined with molecular dynamics simulations revealed that individual Vps32/CHMP4B monomers within a filament are flexible and able to accommodate a range of bending angles. In contrast, the interface between monomers is stable and refractory to changes in conformation. We additionally found that the carboxyl terminus of Vps32/CHMP4B plays a key role in restricting the lateral association of filaments. Our findings highlight new mechanisms by which ESCRT-III filaments assemble to generate a unique polymer capable of membrane remodeling in multiple cellular contexts.


Assuntos
Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Subunidades Proteicas/metabolismo , Animais , Cristalografia por Raios X , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Polímeros/metabolismo , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/biossíntese
14.
Nat Cell Biol ; 13(5): 550-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21478858

RESUMO

Export of proteins from the endoplasmic reticulum in COPII-coated vesicles occurs at defined sites that contain the scaffolding protein Sec16. We identify TFG-1, a new conserved regulator of protein secretion that interacts directly with SEC-16 and controls the export of cargoes from the endoplasmic reticulum in Caenorhabditis elegans. Hydrodynamic studies indicate that TFG-1 forms hexamers that facilitate the co-assembly of SEC-16 with COPII subunits. Consistent with these findings, TFG-1 depletion leads to a marked decline in both SEC-16 and COPII levels at endoplasmic reticulum exit sites. The sequence encoding the amino terminus of human TFG has been previously identified in chromosome translocation events involving two protein kinases, which created a pair of oncogenes. We propose that fusion of these kinases to TFG relocalizes their activities to endoplasmic reticulum exit sites, where they prematurely phosphorylate substrates during endoplasmic reticulum export. Our findings provide a mechanism by which translocations involving TFG can result in cellular transformation and oncogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Transformação Celular Neoplásica , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Retículo Endoplasmático/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA