RESUMO
BACKGROUND: We developed a canine model of acute atopic dermatitis to evaluate the potential of compounds to treat pruritus and skin lesions induced in Dermatophagoides farinae (Df)-sensitized dogs. HYPOTHESIS/OBJECTIVES: The aim was to investigate the effectiveness of long-term recording activity monitors to assess pruritus induced by allergen challenges. ANIMALS: Thirty-two Df-sensitized laboratory dogs. METHODS: In two blinded crossover studies, 28 Df-sensitized dogs were challenged on 3 days with a Df slurry applied to clipped abdominal skin. Dogs were treated with a positive control (prednisolone 1 mg/kg once daily for 5 days, starting 1 day before challenge) or left untreated; all were fitted with activity monitors. To confirm pruritus, a parallel study with four dogs was conducted, filming the dogs before and during challenge and assessing the film for pruritic behaviour. RESULTS: The activity of dogs treated with prednisolone was significantly lower between 00.00 and 03.00 h and between 03.00 and 06.00 h compared with untreated dogs (repeated-measures ANCOVA; P < 0.0001). To determine whether the recorded night-time activity corresponded to pruritic manifestations, we compared activity monitor and video recordings of four dogs for two periods (16.30-20.30 and 24.00-03.00 h) before and during a Df challenge. The correlation between night-time activity monitor activity and observed pruritic behaviour was highly significant (test of correlation coefficient versus zero: r = 0.57, P < 0.0001). CONCLUSIONS AND CLINICAL IMPORTANCE: Determination of night-time activity with activity monitors after allergen challenge appears to be an objective and practical way to assess pruritus in this experimental model of canine atopic dermatitis.
Assuntos
Dermatite Atópica/veterinária , Doenças do Cão/diagnóstico , Alérgenos/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Comportamento Animal , Estudos Cross-Over , Dermatite Atópica/diagnóstico , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Dermatite Atópica/psicologia , Modelos Animais de Doenças , Doenças do Cão/imunologia , Doenças do Cão/patologia , Doenças do Cão/psicologia , Cães , Feminino , Masculino , Pele/patologia , Gravação em VídeoRESUMO
Atopic dermatitis is a multifactorial allergic skin disease in humans and dogs. Genetic predisposition, immunologic hyperreactivity, a defective skin barrier, and environmental factors play a role in its pathogenesis. The aim of this study was to analyze gene expression in the skin of dogs sensitized to house dust mite antigens. Skin biopsy samples were collected from six sensitized and six nonsensitized Beagle dogs before and 6 hr and 24 hr after challenge using skin patches with allergen or saline as a negative control. Transcriptome analysis was performed by the use of DNA microarrays and expression of selected genes was validated by quantitative real-time RT-PCR. Expression data were compared between groups (unpaired design). After 24 hr, 597 differentially expressed genes were detected, 361 with higher and 226 with lower mRNA concentrations in allergen-treated skin of sensitized dogs compared with their saline-treated skin and compared with the control specimens. Functional annotation clustering and pathway- and co-citation analysis showed that the genes with increased expression were involved in inflammation, wound healing, and immune response. In contrast, genes with decreased expression in sensitized dogs were associated with differentiation and barrier function of the skin. Because the sensitized dogs did not show differences in the untreated skin compared with controls, inflammation after allergen patch test probably led to a decrease in the expression of genes important for barrier formation. Our results further confirm the similar pathophysiology of human and canine atopic dermatitis and revealed genes previously not known to be involved in canine atopic dermatitis.