Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220461

RESUMO

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Assuntos
HDL-Colesterol/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana/ultraestrutura , Células 3T3 , Animais , Transporte Biológico/fisiologia , Antígenos CD36/metabolismo , Células CHO , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Colesterol/metabolismo , Cricetulus , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo , Alinhamento de Sequência , Esteróis/metabolismo
2.
Nucleic Acids Res ; 51(12): 6006-6019, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37099381

RESUMO

Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.


Assuntos
Histona Desacetilases , Nucleossomos , Cromatina/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Complexos Multiproteicos/metabolismo , Nucleossomos/genética , Fatores de Transcrição/metabolismo , Humanos
3.
PLoS Pathog ; 18(7): e1010733, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849637

RESUMO

Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Microscopia Crioeletrônica , Humanos , Mutação , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Ratos , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Mol Cell ; 61(6): 834-49, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26990987

RESUMO

The death-inducing signaling complex (DISC) initiates death receptor-induced apoptosis. DISC assembly and activation are controlled by c-FLIP isoforms, which function as pro-apoptotic (c-FLIPL only) or anti-apoptotic (c-FLIPL/c-FLIPS) regulators of procaspase-8 activation. Current models assume that c-FLIP directly competes with procaspase-8 for recruitment to FADD. Using a functional reconstituted DISC, structure-guided mutagenesis, and quantitative LC-MS/MS, we show that c-FLIPL/S binding to the DISC is instead a co-operative procaspase-8-dependent process. FADD initially recruits procaspase-8, which in turn recruits and heterodimerizes with c-FLIPL/S via a hierarchical binding mechanism. Procaspase-8 activation is regulated by the ratio of unbound c-FLIPL/S to procaspase-8, which determines composition of the procaspase-8:c-FLIPL/S heterodimer. Thus, procaspase-8:c-FLIPL exhibits localized enzymatic activity and is preferentially an activator, promoting DED-mediated procaspase-8 oligomer assembly, whereas procaspase-8:c-FLIPS lacks activity and potently blocks procaspase-8 activation. This co-operative hierarchical binding model explains the dual role of c-FLIPL and crucially defines how c-FLIP isoforms differentially control cell fate.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 8/genética , Linhagem da Célula/genética , Isoformas de Proteínas/genética , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Mutagênese , Ligação Proteica , Isoformas de Proteínas/metabolismo , Espectrometria de Massas em Tandem
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33376205

RESUMO

The Aster proteins (encoded by the Gramd1a-c genes) contain a ligand-binding fold structurally similar to a START domain and mediate nonvesicular plasma membrane (PM) to endoplasmic reticulum (ER) cholesterol transport. In an effort to develop small molecule modulators of Asters, we identified 20α-hydroxycholesterol (HC) and U18666A as lead compounds. Unfortunately, both 20α-HC and U18666A target other sterol homeostatic proteins, limiting their utility. 20α-HC inhibits sterol regulatory element-binding protein 2 (SREBP2) processing, and U18666A is an inhibitor of the vesicular trafficking protein Niemann-Pick C1 (NPC1). To develop potent and selective Aster inhibitors, we synthesized a series of compounds by modifying 20α-HC and U18666A. Among these, AI (Aster inhibitor)-1l, which has a longer side chain than 20α-HC, selectively bound to Aster-C. The crystal structure of Aster-C in complex with AI-1l suggests that sequence and flexibility differences in the loop that gates the binding cavity may account for the ligand specificity for Aster C. We further identified the U18666A analog AI-3d as a potent inhibitor of all three Aster proteins. AI-3d blocks the ability of Asters to bind and transfer cholesterol in vitro and in cells. Importantly, AI-3d also inhibits the movement of low-density lipoprotein (LDL) cholesterol to the ER, although AI-3d does not block NPC1. This finding positions the nonvesicular Aster pathway downstream of NPC1-dependent vesicular transport in the movement of LDL cholesterol to the ER. Selective Aster inhibitors represent useful chemical tools to distinguish vesicular and nonvesicular sterol transport mechanisms in mammalian cells.


Assuntos
Transporte Biológico/efeitos dos fármacos , Glicoproteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Androstenos/farmacologia , Animais , Células CHO , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Cricetulus , Retículo Endoplasmático/metabolismo , Humanos , Hidroxicolesteróis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteína C1 de Niemann-Pick/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Esteróis/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(38): 23597-23605, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900932

RESUMO

Trinucleotide repeat (TNR) expansions cause nearly 20 severe human neurological diseases which are currently untreatable. For some of these diseases, ongoing somatic expansions accelerate disease progression and may influence age of onset. This new knowledge emphasizes the importance of understanding the protein factors that drive expansions. Recent genetic evidence indicates that the mismatch repair factor MutSß (Msh2-Msh3 complex) and the histone deacetylase HDAC3 function in the same pathway to drive triplet repeat expansions. Here we tested the hypothesis that HDAC3 deacetylates MutSß and thereby activates it to drive expansions. The HDAC3-selective inhibitor RGFP966 was used to examine its biological and biochemical consequences in human tissue culture cells. HDAC3 inhibition efficiently suppresses repeat expansion without impeding canonical mismatch repair activity. Five key lysine residues in Msh3 are direct targets of HDAC3 deacetylation. In cells expressing Msh3 in which these lysine residues are mutated to arginine, the inhibitory effect of RGFP966 on expansions is largely bypassed, consistent with the direct deacetylation hypothesis. RGFP966 treatment does not alter MutSß subunit abundance or complex formation but does partially control its subcellular localization. Deacetylation sites in Msh3 overlap a nuclear localization signal, and we show that localization of MutSß is partially dependent on HDAC3 activity. Together, these results indicate that MutSß is a key target of HDAC3 deacetylation and provide insights into an innovative regulatory mechanism for triplet repeat expansions. The results suggest expansion activity may be druggable and support HDAC3-selective inhibition as an attractive therapy in some triplet repeat expansion diseases.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Histona Desacetilases , Expansão das Repetições de Trinucleotídeos/genética , Acetilação/efeitos dos fármacos , Acrilamidas/farmacologia , Linhagem Celular , Células Cultivadas , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Fenilenodiaminas/farmacologia
7.
J Am Chem Soc ; 144(8): 3360-3364, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175758

RESUMO

We describe a new method to produce histone H2B by semisynthesis with an engineered sortase transpeptidase. N-Terminal tail site-specifically modified acetylated, lactylated, and ß-hydroxybutyrylated histone H2Bs were incorporated into nucleosomes and investigated as substrates of histone deacetylase (HDAC) complexes and sirtuins. A wide range of rates and site-specificities were observed by these enzyme forms suggesting distinct biological roles in regulating chromatin structure and epigenetics.


Assuntos
Histonas , Sirtuínas , Cromatina , Histona Desacetilases/genética , Histonas/química , Nucleossomos
8.
Nucleic Acids Res ; 48(22): 12972-12982, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264408

RESUMO

Class I histone deacetylase complexes play essential roles in many nuclear processes. Whilst they contain a common catalytic subunit, they have diverse modes of action determined by associated factors in the distinct complexes. The deacetylase module from the NuRD complex contains three protein domains that control the recruitment of chromatin to the deacetylase enzyme, HDAC1/2. Using biochemical approaches and cryo-electron microscopy, we have determined how three chromatin-binding domains (MTA1-BAH, MBD2/3 and RBBP4/7) are assembled in relation to the core complex so as to facilitate interaction of the complex with the genome. We observe a striking arrangement of the BAH domains suggesting a potential mechanism for binding to di-nucleosomes. We also find that the WD40 domains from RBBP4 are linked to the core with surprising flexibility that is likely important for chromatin engagement. A single MBD2 protein binds asymmetrically to the dimerisation interface of the complex. This symmetry mismatch explains the stoichiometry of the complex. Finally, our structures suggest how the holo-NuRD might assemble on a di-nucleosome substrate.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Proteínas Repressoras/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Transativadores/genética , Sequência de Aminoácidos/genética , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/ultraestrutura , Histona Desacetilase 1/genética , Histona Desacetilase 1/ultraestrutura , Histona Desacetilases/genética , Histona Desacetilases/ultraestrutura , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/ultraestrutura , Nucleossomos/genética , Nucleossomos/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Repressoras/ultraestrutura , Proteína 4 de Ligação ao Retinoblastoma/ultraestrutura , Transativadores/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527239

RESUMO

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Assuntos
Proteínas CLOCK/química , Elementos E-Box , Heme/química , Transdução de Sinais , Fatores de Transcrição ARNTL/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Catálise , Relógios Circadianos , Criptocromos/química , DNA/química , Elétrons , Escherichia coli/metabolismo , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Oxigênio/química , Proteínas Circadianas Period/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Transcrição Gênica
10.
Hum Mol Genet ; 28(15): 2501-2513, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31067316

RESUMO

Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.


Assuntos
Montagem e Desmontagem da Cromatina , Suturas Cranianas/crescimento & desenvolvimento , Craniossinostoses/metabolismo , Mutação de Sentido Incorreto , Nucleossomos/metabolismo , Osteogênese , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Animais , Suturas Cranianas/metabolismo , Craniossinostoses/genética , Craniossinostoses/fisiopatologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Humanos , Lactente , Masculino , Camundongos , Ligação Proteica , Conformação Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia , População Branca , Sequenciamento Completo do Genoma
11.
Mol Cell ; 51(1): 57-67, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23791785

RESUMO

Class I histone deacetylases (HDAC1, HDAC2, and HDAC3) are recruited by cognate corepressor proteins into specific transcriptional repression complexes that target HDAC activity to chromatin resulting in chromatin condensation and transcriptional silencing. We previously reported the structure of HDAC3 in complex with the SMRT corepressor. This structure revealed the presence of inositol-tetraphosphate [Ins(1,4,5,6)P4] at the interface of the two proteins. It was previously unclear whether the role of Ins(1,4,5,6)P4 is to act as a structural cofactor or a regulator of HDAC3 activity. Here we report the structure of HDAC1 in complex with MTA1 from the NuRD complex. The ELM2-SANT domains from MTA1 wrap completely around HDAC1 occupying both sides of the active site such that the adjacent BAH domain is ideally positioned to recruit nucleosomes to the active site of the enzyme. Functional assays of both the HDAC1 and HDAC3 complexes reveal that Ins(1,4,5,6)P4 is a bona fide conserved regulator of class I HDAC complexes.


Assuntos
Histona Desacetilase 1/química , Histona Desacetilases/química , Fosfatos de Inositol/fisiologia , Proteínas Repressoras/química , Sequência de Aminoácidos , Dimerização , Células HEK293 , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/fisiologia , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Humanos , Fosfatos de Inositol/química , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Especificidade por Substrato , Transativadores
12.
Mol Cell ; 47(2): 291-305, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22683266

RESUMO

Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.


Assuntos
Apoptose , Caspase 8/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Células Jurkat , Espectrometria de Massas/métodos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Receptor fas/química
13.
Genes Dev ; 25(12): 1262-74, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21685362

RESUMO

We previously identified the E3 ubiquitin ligase IDOL as a sterol-dependent regulator of the LDL receptor (LDLR). The molecular pathway underlying IDOL action, however, remains to be determined. Here we report the identification and biochemical and structural characterization of an E2-E3 ubiquitin ligase complex for LDLR degradation. We identified the UBE2D family (UBE2D1-4) as E2 partners for IDOL that support both autoubiquitination and IDOL-dependent ubiquitination of the LDLR in a cell-free system. NMR chemical shift mapping and a 2.1 Å crystal structure of the IDOL RING domain-UBE2D1 complex revealed key interactions between the dimeric IDOL protein and the E2 enzyme. Analysis of the IDOL-UBE2D1 interface also defined the stereochemical basis for the selectivity of IDOL for UBE2Ds over other E2 ligases. Structure-based mutations that inhibit IDOL dimerization or IDOL-UBE2D interaction block IDOL-dependent LDLR ubiquitination and degradation. Furthermore, expression of a dominant-negative UBE2D enzyme inhibits the ability of IDOL to degrade the LDLR in cells. These results identify the IDOL-UBE2D complex as an important determinant of LDLR activity, and provide insight into molecular mechanisms underlying the regulation of cholesterol uptake.


Assuntos
Receptores de LDL/metabolismo , Esteróis/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Células HEK293 , Humanos , Ferro/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Estereoisomerismo , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/química
14.
Nature ; 481(7381): 335-40, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22230954

RESUMO

Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.


Assuntos
Histona Desacetilases/química , Histona Desacetilases/metabolismo , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Correpressor 2 de Receptor Nuclear/química , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Humanos , Fosfatos de Inositol/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Terapia de Alvo Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade
15.
J Med Genet ; 53(5): 330-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26769062

RESUMO

BACKGROUND: The combination of developmental delay, facial characteristics, hearing loss and abnormal fat distribution in the distal limbs is known as Pierpont syndrome. The aim of the present study was to detect and study the cause of Pierpont syndrome. METHODS: We used whole-exome sequencing to analyse four unrelated individuals with Pierpont syndrome, and Sanger sequencing in two other unrelated affected individuals. Expression of mRNA of the wild-type candidate gene was analysed in human postmortem brain specimens, adipose tissue, muscle and liver. Expression of RNA in lymphocytes in patients and controls was additionally analysed. The variant protein was expressed in, and purified from, HEK293 cells to assess its effect on protein folding and function. RESULTS: We identified a single heterozygous missense variant, c.1337A>G (p.Tyr446Cys), in transducin ß-like 1 X-linked receptor 1 (TBL1XR1) as disease-causing in all patients. TBL1XR1 mRNA expression was demonstrated in pituitary, hypothalamus, white and brown adipose tissue, muscle and liver. mRNA expression is lower in lymphocytes of two patients compared with the four controls. The mutant TBL1XR1 protein assembled correctly into the nuclear receptor corepressor (NCoR)/ silencing mediator for retinoid and thyroid receptors (SMRT) complex, suggesting a dominant-negative mechanism. This contrasts with loss-of-function germline TBL1XR1 deletions and other TBL1XR1 mutations that have been implicated in autism. However, autism is not present in individuals with Pierpont syndrome. CONCLUSIONS: This study identifies a specific TBL1XR1 mutation as the cause of Pierpont syndrome. Deletions and other mutations in TBL1XR1 can cause autism. The marked differences between Pierpont patients with the p.Tyr446Cys mutation and individuals with other mutations and whole gene deletions indicate a specific, but as yet unknown, disease mechanism of the TBL1XR1 p.Tyr446Cys mutation.


Assuntos
Expressão Gênica , Lipomatose/metabolismo , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Adulto , Criança , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Fácies , Feminino , Humanos , Lipomatose/genética , Lipomatose/patologia , Masculino , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Especificidade de Órgãos , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Adulto Jovem
16.
Nucleic Acids Res ; 43(4): 2033-44, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25653165

RESUMO

Recent proteomic studies have identified a novel histone deacetylase complex that is upregulated during mitosis and is associated with cyclin A. This complex is conserved from nematodes to man and contains histone deacetylases 1 and 2, the MIDEAS corepressor protein and a protein called DNTTIP1 whose function was hitherto poorly understood. Here, we report the structures of two domains from DNTTIP1. The amino-terminal region forms a tight dimerization domain with a novel structural fold that interacts with and mediates assembly of the HDAC1:MIDEAS complex. The carboxy-terminal domain of DNTTIP1 has a structure related to the SKI/SNO/DAC domain, despite lacking obvious sequence homology. We show that this domain in DNTTIP1 mediates interaction with both DNA and nucleosomes. Thus, DNTTIP1 acts as a dimeric chromatin binding module in the HDAC1:MIDEAS corepressor complex.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Histona Desacetilase 1/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Ciclo Celular , Proteínas Correpressoras/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Histona Desacetilase 2/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição
17.
Proc Natl Acad Sci U S A ; 111(27): 9840-5, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958871

RESUMO

Histone deacetylases 1 and 2 (HDAC1/2) form the core catalytic components of corepressor complexes that modulate gene expression. In most cell types, deletion of both Hdac1 and Hdac2 is required to generate a discernible phenotype, suggesting their activity is largely redundant. We have therefore generated an ES cell line in which Hdac1 and Hdac2 can be inactivated simultaneously. Loss of HDAC1/2 resulted in a 60% reduction in total HDAC activity and a loss of cell viability. Cell death is dependent upon cell cycle progression, because differentiated, nonproliferating cells retain their viability. Furthermore, we observe increased mitotic defects, chromatin bridges, and micronuclei, suggesting HDAC1/2 are necessary for accurate chromosome segregation. Consistent with a critical role in the regulation of gene expression, microarray analysis of Hdac1/2-deleted cells reveals 1,708 differentially expressed genes. Significantly for the maintenance of stem cell self-renewal, we detected a reduction in the expression of the pluripotent transcription factors, Oct4, Nanog, Esrrb, and Rex1. HDAC1/2 activity is regulated through binding of an inositol tetraphosphate molecule (IP4) sandwiched between the HDAC and its cognate corepressor. This raises the important question of whether IP4 regulates the activity of the complex in cells. By rescuing the viability of double-knockout cells, we demonstrate for the first time (to our knowledge) that mutations that abolish IP4 binding reduce the activity of HDAC1/2 in vivo. Our data indicate that HDAC1/2 have essential and pleiotropic roles in cellular proliferation and regulate stem cell self-renewal by maintaining expression of key pluripotent transcription factors.


Assuntos
Divisão Celular/fisiologia , Células-Tronco Embrionárias/enzimologia , Histona Desacetilase 1/fisiologia , Histona Desacetilase 2/fisiologia , Células-Tronco Pluripotentes/enzimologia , Acetilação , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo
18.
J Biol Chem ; 290(29): 18237-18244, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26055705

RESUMO

Class IIa histone deacetylases repress transcription of target genes. However, their mechanism of action is poorly understood because they exhibit very low levels of deacetylase activity. The class IIa HDACs are associated with the SMRT/NCoR repression complexes and this may, at least in part, account for their repressive activity. However, the molecular mechanism of recruitment to co-repressor proteins has yet to be established. Here we show that a repeated peptide motif present in both SMRT and NCoR is sufficient to mediate specific interaction, with micromolar affinity, with all the class IIa HDACs (HDACs 4, 5, 7, and 9). Mutations in the consensus motif abrogate binding. Mutational analysis of HDAC4 suggests that the peptide interacts in the vicinity of the active site of the enzyme and requires the "closed" conformation of the zinc-binding loop on the surface of the enzyme. Together these findings represent the first insights into the molecular mechanism of recruitment of class IIa HDACs to the SMRT/NCoR repression complexes.


Assuntos
Histona Desacetilases/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Histona Desacetilases/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Correpressor 2 de Receptor Nuclear/química , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo
19.
Cancer Metastasis Rev ; 33(4): 857-67, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25352341

RESUMO

Gene expression is controlled through the recruitment of large coregulator complexes to specific gene loci to regulate chromatin structure by modifying epigenetic marks on DNA and histones. Metastasis-associated protein 1 (MTA1) is an essential component of the nucleosome remodelling and deacetylase (NuRD) complex that acts as a scaffold protein to assemble enzymatic activity and nucleosome targeting proteins. MTA1 consists of four characterised domains, a number of interaction motifs, and regions that are predicted to be intrinsically disordered. The ELM2-SANT domain is one of the best-characterised regions of MTA1, which recruits histone deacetylase 1 (HDAC1) and activates the enzyme in the presence of inositol phosphate. MTA1 is highly upregulated in several types of aggressive tumours and is therefore a possible target for cancer therapy. In this review, we summarise the structure and function of the four domains of MTA1 and discuss the possible functions of less well-characterised regions of the protein.


Assuntos
Epigênese Genética , Histona Desacetilases/genética , Neoplasias/genética , Proteínas Repressoras/genética , Ativação Transcricional/genética , Montagem e Desmontagem da Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/genética , Histona Desacetilases/química , Histonas/genética , Humanos , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia , Proteínas Repressoras/química , Relação Estrutura-Atividade , Transativadores
20.
N Engl J Med ; 366(3): 243-9, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22168587

RESUMO

Thyroid hormones exert their effects through alpha (TRα1) and beta (TRß1 and TRß2) receptors. Here we describe a child with classic features of hypothyroidism (growth retardation, developmental retardation, skeletal dysplasia, and severe constipation) but only borderline-abnormal thyroid hormone levels. Using whole-exome sequencing, we identified a de novo heterozygous nonsense mutation in a gene encoding thyroid hormone receptor alpha (THRA) and generating a mutant protein that inhibits wild-type receptor action in a dominant negative manner. Our observations are consistent with defective human TRα-mediated thyroid hormone resistance and substantiate the concept of hormone action through distinct receptor subtypes in different target tissues.


Assuntos
Códon sem Sentido , Transtornos do Crescimento/genética , Hipotireoidismo/genética , Receptores alfa dos Hormônios Tireóideos/genética , Tiroxina/sangue , Tiroxina/uso terapêutico , Tri-Iodotironina/sangue , Criança , Feminino , Transtornos do Crescimento/tratamento farmacológico , Heterozigoto , Humanos , Hipotireoidismo/tratamento farmacológico , Modelos Moleculares , Conformação Proteica , Receptores alfa dos Hormônios Tireóideos/química , Hormônios Tireóideos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA