Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960717

RESUMO

Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1ß-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.

2.
Nature ; 629(8011): 402-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632412

RESUMO

Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition, which is essential for neuronal computation1,2. Deviations from a balanced state have been linked to neurodevelopmental disorders, and severe disruptions result in epilepsy3-5. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here we identify a signalling pathway in the adult mouse neocortex that is activated in response to increased neuronal network activity. Overactivation of excitatory neurons is signalled to the network through an increase in the levels of BMP2, a growth factor that is well known for its role as a morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of perineuronal nets. PV-interneuron-specific disruption of BMP2-SMAD1 signalling is accompanied by a loss of glutamatergic innervation in PV cells, underdeveloped perineuronal nets and decreased excitability. Ultimately, this impairment of the functional recruitment of PV interneurons disrupts the cortical excitation-inhibition balance, with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signalling is repurposed to stabilize cortical networks in the adult mammalian brain.


Assuntos
Proteína Morfogenética Óssea 2 , Interneurônios , Neocórtex , Rede Nervosa , Inibição Neural , Neurônios , Transdução de Sinais , Proteína Smad1 , Animais , Feminino , Humanos , Masculino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Interneurônios/metabolismo , Neocórtex/metabolismo , Neocórtex/citologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Proteína Smad1/metabolismo , Sinapses/metabolismo , Ácido Glutâmico/metabolismo
3.
RNA ; 29(8): 1140-1165, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37137667

RESUMO

Removal of introns during pre-mRNA splicing, which is central to gene expression, initiates by base pairing of U1 snRNA with a 5' splice site (5'SS). In mammals, many introns contain weak 5'SSs that are not efficiently recognized by the canonical U1 snRNP, suggesting alternative mechanisms exist. Here, we develop a cross-linking immunoprecipitation coupled to a high-throughput sequencing method, BCLIP-seq, to identify NRDE2 (nuclear RNAi-defective 2), and CCDC174 (coiled-coil domain-containing 174) as novel RNA-binding proteins in mouse ES cells that associate with U1 snRNA and 5'SSs. Both proteins bind directly to U1 snRNA independently of canonical U1 snRNP-specific proteins, and they are required for the selection and effective processing of weak 5'SSs. Our results reveal that mammalian cells use noncanonical splicing factors bound directly to U1 snRNA to effectively select suboptimal 5'SS sequences in hundreds of genes, promoting proper splice site choice, and accurate pre-mRNA splicing.


Assuntos
Precursores de RNA , Sítios de Splice de RNA , Animais , Camundongos , Sítios de Splice de RNA/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Interferência de RNA , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Processamento Alternativo , Mamíferos/genética
4.
BMC Evol Biol ; 18(1): 34, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29566669

RESUMO

BACKGROUND: It has been proposed that non-genetic inheritance could promote species fitness. Non-genetic inheritance could allow offspring to benefit from the experience of their parents, and could advocate pre-adaptation to prevailing and potentially selective conditions. Indeed, adaptive parental effects have been modeled and observed, but the molecular mechanisms behind them are far from understood. RESULTS: In the present study, we investigated whether maternal RNA can carry information about environmental conditions experienced by the mother in a wild vertebrate. Maternal RNA directs the development of the early embryo in many non-mammalian vertebrates and invertebrates. However, it is not known whether vertebrate maternal RNA integrates information about the parental environment. We sequenced the maternal RNA contribution from a model that we expected to rely on parental effects: the invasive benthic fish species Neogobius melanostomus (Round Goby). We found that maternal RNA expression levels correlated with the water temperature experienced by the mother before oviposition, and identified temperature-responsive gene groups such as core nucleosome components or the microtubule cytoskeleton. CONCLUSIONS: Our findings suggest that the maternal RNA contribution may incorporate environmental information. Maternal RNA should therefore be considered a potentially relevant pathway for non-genetic inheritance. Also, the ability of a species to integrate environmental information in the maternal RNA contribution could potentially contribute to species fitness and may also play a role in extraordinary adaptive success stories of invasive species such as the round goby.


Assuntos
Animais Selvagens/genética , Embrião não Mamífero/metabolismo , Perciformes/embriologia , Perciformes/genética , RNA/metabolismo , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Análise de Componente Principal , Transdução de Sinais/genética , Temperatura
5.
Analyst ; 144(1): 220-229, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30411762

RESUMO

A novel integrated metabolomics/lipidomics workflow is introduced enabling high coverage of polar metabolites and non-polar lipids within one analytical run. Dual HILIC and RP chromatography were combined to high-resolution mass spectrometry. As a major advantage, only one data file per sample was obtained by fully automated simultaneous analysis of two extracts per sample. Hence, the unprecedented high coverage without compromise on analytical throughput was not only obtained by the orthogonality of the chromatographic separations, but also by the implementation of dedicated sample preparation procedures resulting in optimum extraction efficiency for both sub-omes. Thus, the method addressed completely hydrophilic sugars and organic acids next to water-insoluble triglycerides. As for the timing of the dual chromatography setup, HILIC and RP separation were performed consecutively. However, re-equilibration of the HILIC column during elution of RP compounds and vice versa reduced the overall analysis time by one third to 32 min. Application to the Standard Reference Material SRM 1950 - Metabolites in Frozen Human Plasma resulted in >100 metabolite and >380 lipid identifications based on accurate mass implementing fast polarity switching and acquiring data dependent MS2 spectra with the use of automated exclusion lists. Targeted quantification based on external calibrations and 13C labeled yeast internal standards was successfully accomplished for 59 metabolites. Moreover, the potential for lipid quantification was shown integrating non-endogenous lipids as internal standards. In human plasma, concentrations ranging over 4 orders of magnitude (low nM to high µM) were assessed.


Assuntos
Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Lipídeos/sangue , Metabolômica/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas/métodos
6.
Analyst ; 143(5): 1250-1258, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29431763

RESUMO

Given the chemical diversity of lipids and their biological relevance, suitable methods for lipid profiling and quantification are demanded to reduce sample complexity and analysis times. In this work, we present a novel on-line chromatographic method coupling hydrophilic interaction liquid chromatography (HILIC) dedicated to class-specific separation of polar lipid to reversed-phase chromatography (RP) for non-polar lipid analysis. More specifically, the void volume of the HILIC separation-consisting of non-polar lipids- is transferred to the orthogonal RP column enabling the on-line combination of HILIC with RP without any dilution in the second dimension. In this setup the orthogonal HILIC and RP separations were performed in parallel and the effluents of both columns were combined prior to high-resolution MS detection, offering the full separation space in one analytical run. Rapid separation for both polar and non-polar lipids within only 15 min (including reequilibration time) was enabled using sub-2 µm particles and UHPLC. The method proved to be robust with excellent retention time stability (RSDs < 1%) and LODs in the fmol to pmol (absolute on column) range even in the presence of complex biological matrix such as human plasma. The presented high-resolution LC-MS/MS method leads to class-specific separation of polar lipids and separation of non-polar lipids which is lost in conventional HILIC separations. HILIC-RP-MS is a promising tool for targeted and untargeted lipidomics workflows as three interesting features are combined namely (1) the decreased run time of state of the art shotgun MS methods, (2) the elevated linear dynamic range inherent to chromatographic separation and (3) increased level of identification by separation of polar and non-polar lipid classes.

7.
Anal Chem ; 89(14): 7667-7674, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28581703

RESUMO

In this work, simultaneous targeted metabolic profiling by isotope dilution and non-targeted fingerprinting is proposed for cancer cell studies. The novel streamlined metabolomics workflow was established using anion-exchange chromatography (IC) coupled to high-resolution mass spectrometry (MS). The separation time of strong anion-exchange (2 mm column, flow rate 380 µL min-1, injection volume 5 µL) could be decreased to 25 min for a target list comprising organic acids, sugars, sugar phosphates, and nucleotides. Internal standardization by fully 13C labeled Pichia pastoris extracts enabled absolute quantification of the primary metabolites in adherent cancer cell models. Limits of detection (LODs) in the low nanomolar range and excellent intermediate precisions of the isotopologue ratios (on average <5%, N = 5, over 40 h) were observed. As a result of internal standardization, linear dynamic ranges over 4 orders of magnitude (5 nM-50 µM, R2 > 0.99) were obtained. Experiments on drug-sensitive versus resistant SW480 cancer cells showed the feasibility of merging analytical tasks into one analytical run. Comparing fingerprinting with and without internal standard proved that the presence of the 13C labeled yeast extract required for absolute quantification was not detrimental to non-targeted data evaluation. Several interesting metabolites were discovered by accurate mass and comparing MS2 spectra (acquired in ddMS2 mode) with spectral libraries. Significant differences revealed distinct metabolic phenotypes of drug-sensitive and resistant SW480 cells.


Assuntos
Metabolômica , Isótopos de Carbono , Cromatografia por Troca Iônica , Humanos , Espectrometria de Massas , Pichia/metabolismo , Células Tumorais Cultivadas
8.
Genome Res ; 24(4): 639-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24642862

RESUMO

Despite considerable differences in morphology and complexity of body plans among animals, a great part of the gene set is shared among Bilateria and their basally branching sister group, the Cnidaria. This suggests that the common ancestor of eumetazoans already had a highly complex gene repertoire. At present it is therefore unclear how morphological diversification is encoded in the genome. Here we address the possibility that differences in gene regulation could contribute to the large morphological divergence between cnidarians and bilaterians. To this end, we generated the first genome-wide map of gene regulatory elements in a nonbilaterian animal, the sea anemone Nematostella vectensis. Using chromatin immunoprecipitation followed by deep sequencing of five chromatin modifications and a transcriptional cofactor, we identified over 5000 enhancers in the Nematostella genome and could validate 75% of the tested enhancers in vivo. We found that in Nematostella, but not in yeast, enhancers are characterized by the same combination of histone modifications as in bilaterians, and these enhancers preferentially target developmental regulatory genes. Surprisingly, the distribution and abundance of gene regulatory elements relative to these genes are shared between Nematostella and bilaterian model organisms. Our results suggest that complex gene regulation originated at least 600 million yr ago, predating the common ancestor of eumetazoans.


Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Animais , Mapeamento Cromossômico , Genoma , Filogenia , Anêmonas-do-Mar
9.
Genes Dev ; 23(5): 589-601, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19270159

RESUMO

Duplication of eukaryotic genomes during S phase is coordinated in space and time. In order to identify zones of initiation and cell-type- as well as gender-specific plasticity of DNA replication, we profiled replication timing, histone acetylation, and transcription throughout the Drosophila genome. We observed two waves of replication initiation with many distinct zones firing in early-S phase and multiple, less defined peaks at the end of S phase, suggesting that initiation becomes more promiscuous in late-S phase. A comparison of different cell types revealed widespread plasticity of replication timing on autosomes. Most occur in large regions, but only half coincide with local differences in transcription. In contrast to confined autosomal differences, a global shift in replication timing occurs throughout the single male X chromosome. Unlike in females, the dosage-compensated X chromosome replicates almost exclusively early. This difference occurs at sites that are not transcriptionally hyperactivated, but show increased acetylation of Lys 16 of histone H4 (H4K16ac). This suggests a transcription-independent, yet chromosome-wide process related to chromatin. Importantly, H4K16ac is also enriched at initiation zones as well as early replicating regions on autosomes during S phase. Together, our study reveals novel organizational principles of DNA replication of the Drosophila genome and suggests that H4K16ac is more closely correlated with replication timing than is transcription.


Assuntos
Cromatina/genética , Período de Replicação do DNA/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma de Inseto/genética , Acetilação , Animais , Fenômenos Fisiológicos Celulares , Cromossomos/genética , Cromossomos/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Fase S/genética , Fatores Sexuais , Cromossomo X/genética
10.
Analyst ; 140(22): 7687-95, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26451393

RESUMO

The sulfur metabolic pathway is involved in basic modes of cellular metabolism, including methylation, cell division, respiratory oscillations and stress responses. Hence, the implicated high reactivity of the sulfur pathway intermediates entails challenges for their quantitative analysis. In particular the unwanted oxidation of the thiol group-containing metabolites glutathione, cysteine, homocysteine, γ-glutamyl cysteine and cysteinyl glycine must be prevented in order to obtain accurate snapshots of this important part of cellular metabolism. Suitable analytical methodologies are therefore needed to support studies of drug metabolism and metabolic engineering. In this work, a novel sample preparation strategy targeting thiolic metabolites was established by implementing thiol group protection with N-ethyl maleimide using a cold methanol metabolite extraction procedure. It was shown that N-ethyl maleimide derivatization is compatible with typical metabolite extraction procedures and also allowed for the stabilization of the instable thiolic metabolites in a fully (13)C-labeled yeast cell extract. The stable isotope labeled metabolite analogs could be used for internal standardization to achieve metabolite quantification with high precision. Furthermore, a dedicated hydrophilic interaction liquid chromatography tandem mass spectrometry method for the separation of sulfur metabolic pathway intermediates using a sub-2 µm particle size stationary phase was developed. Coupled with tandem mass spectrometry, the presented methodology proved to be robust, and sensitive (absolute detection limits in the low femtomole range), and allowed for the quantification of cysteine, cysteinyl glycine, cystathionine, cystine, glutamic acid, glutamyl cysteine, reduced glutathione, glutathione disulfide, homocysteine, methionine, S-adenosyl homocysteine and serine in a human ovarian carcinoma cell model.


Assuntos
Metabolômica/métodos , Neoplasias Ovarianas/metabolismo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Etilmaleimida/química , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Redes e Vias Metabólicas , Ovário/metabolismo , Pichia/química , Pichia/metabolismo , Compostos de Sulfidrila/análise , Enxofre/análise , Fluxo de Trabalho
11.
Genome Res ; 20(6): 771-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20435908

RESUMO

The replication of a chromosomal region during S phase can be highly dynamic between cell types that differ in transcriptome and epigenome. Early replication timing has been positively correlated with several histone modifications that occur at active genes, while repressive histone modifications mark late replicating regions. This raises the question if chromatin modulates the initiating events of replication. To gain insights into this question, we have studied the function of heterochromatin protein 1 (HP1), which is a reader of repressive methylation at histone H3 lysine 9, in genome-wide organization of replication. Cells with reduced levels of HP1 show an advanced replication timing of centromeric repeats in agreement with the model that repressive chromatin mediates the very late replication of large clusters of constitutive heterochromatin. Surprisingly, however, regions with high levels of interspersed repeats on the chromosomal arms, in particular on chromosome 4 and in pericentromeric regions of chromosome 2, behave differently. Here, loss of HP1 results in delayed replication. The fact that these regions are bound by HP1 suggests a direct effect. Thus while HP1 mediates very late replication of centromeric DNA, it is also required for early replication of euchromatic regions with high levels of repeats. This observation of opposing functions of HP1 suggests a model where HP1-mediated repeat inactivation or replication complex loading on the chromosome arms is required for proper activation of origins of replication that fire early. At the same time, HP1-mediated repression at constitutive heterochromatin is required to ensure replication of centromeric repeats at the end of S phase.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Replicação do DNA , Proteínas de Drosophila/fisiologia , Drosophila/genética , Genoma , Animais , Proteínas Cromossômicas não Histona/genética , Cromossomos , Metilação de DNA , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Origem de Replicação
12.
Nat Ecol Evol ; 6(12): 1921-1939, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36396969

RESUMO

Transcription factors are crucial drivers of cellular differentiation during animal development and often share ancient evolutionary origins. The T-box transcription factor Brachyury plays a pivotal role as an early mesoderm determinant and neural repressor in vertebrates; yet, the ancestral function and key evolutionary transitions of the role of this transcription factor remain obscure. Here, we present a genome-wide target-gene screen using chromatin immunoprecipitation sequencing in the sea anemone Nematostella vectensis, an early branching non-bilaterian, and the sea urchin Strongylocentrotus purpuratus, a representative of the sister lineage of chordates. Our analysis reveals an ancestral gene regulatory feedback loop connecting Brachyury, FoxA and canonical Wnt signalling involved in axial patterning that predates the cnidarian-bilaterian split about 700 million years ago. Surprisingly, we also found that part of the gene regulatory network controlling the fate of neuromesodermal progenitors in vertebrates was already present in the common ancestor of cnidarians and bilaterians. However, while several endodermal and neuronal Brachyury target genes are ancestrally shared, hardly any of the key mesodermal downstream targets in vertebrates are found in the sea anemone or the sea urchin. Our study suggests that a limited number of target genes involved in mesoderm formation were newly acquired in the vertebrate lineage, leading to a dramatic shift in the function of this ancestral developmental regulator.


Assuntos
Mesoderma , Anêmonas-do-Mar , Animais , Retroalimentação , Fatores de Transcrição , Anêmonas-do-Mar/genética
13.
EMBO J ; 26(24): 4974-84, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18007591

RESUMO

Post-translational modifications of histones are involved in transcript initiation and elongation. Methylation of lysine 36 of histone H3 (H3K36me) resides promoter distal at transcribed regions in Saccharomyces cerevisiae and is thought to prevent spurious initiation through recruitment of histone-deacetylase activity. Here, we report surprising complexity in distribution, regulation and readout of H3K36me in Drosophila involving two histone methyltransferases (HMTases). Dimethylation of H3K36 peaks adjacent to promoters and requires dMes-4, whereas trimethylation accumulates toward the 3' end of genes and relies on dHypb. Reduction of H3K36me3 is lethal in Drosophila larvae and leads to elevated levels of acetylation, specifically at lysine 16 of histone H4 (H4K16ac). In contrast, reduction of both di- and trimethylation decreases lysine 16 acetylation. Thus di- and trimethylation of H3K36 have opposite effects on H4K16 acetylation, which we propose enable dynamic changes in chromatin compaction during transcript elongation.


Assuntos
Drosophila melanogaster/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Acetilação , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Interferência de RNA
14.
PLoS Biol ; 6(10): e245, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18842067

RESUMO

DNA replication in mammals is regulated via the coordinate firing of clusters of replicons that duplicate megabase-sized chromosome segments at specific times during S-phase. Cytogenetic studies show that these "replicon clusters" coalesce as subchromosomal units that persist through multiple cell generations, but the molecular boundaries of such units have remained elusive. Moreover, the extent to which changes in replication timing occur during differentiation and their relationship to transcription changes has not been rigorously investigated. We have constructed high-resolution replication-timing profiles in mouse embryonic stem cells (mESCs) before and after differentiation to neural precursor cells. We demonstrate that chromosomes can be segmented into multimegabase domains of coordinate replication, which we call "replication domains," separated by transition regions whose replication kinetics are consistent with large originless segments. The molecular boundaries of replication domains are remarkably well conserved between distantly related ESC lines and induced pluripotent stem cells. Unexpectedly, ESC differentiation was accompanied by the consolidation of smaller differentially replicating domains into larger coordinately replicated units whose replication time was more aligned to isochore GC content and the density of LINE-1 transposable elements, but not gene density. Replication-timing changes were coordinated with transcription changes for weak promoters more than strong promoters, and were accompanied by rearrangements in subnuclear position. We conclude that replication profiles are cell-type specific, and changes in these profiles reveal chromosome segments that undergo large changes in organization during differentiation. Moreover, smaller replication domains and a higher density of timing transition regions that interrupt isochore replication timing define a novel characteristic of the pluripotent state.


Assuntos
Diferenciação Celular/fisiologia , Replicação do DNA/fisiologia , Células-Tronco Embrionárias/citologia , Transcrição Gênica/fisiologia , Animais , Ciclo Celular/fisiologia , Linhagem Celular , Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
15.
Curr Opin Genet Dev ; 16(2): 177-83, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16503127

RESUMO

The coordination of transcription and timing of DNA replication during the S phase of the cell cycle has recently been studied chromosome-wide in high resolution. This revealed that in the complex genome of higher eukaryotes actively transcribed genes are more likely to replicate early in S phase. Dynamic changes in chromatin structure and nuclear organization appear to provide the underlying mechanism to link transcription and replication. A possible evolutionary benefit for this connection might result from differential replication fidelity during S phase, and comparisons of the human and chimpanzee genomes are compatible with this hypothesis.


Assuntos
Replicação do DNA , Transcrição Gênica , Animais , Humanos , Modelos Genéticos
16.
Genes (Basel) ; 10(3)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875862

RESUMO

The question as to how early life experiences are stored on a molecular level and affect traits later in life is highly topical in ecology, medicine, and epigenetics. In this study, we use a fish model to investigate whether DNA methylation mediates early life experiences and predetermines a territorial male reproductive phenotype. In fish, adult reproductive phenotypes frequently depend on previous life experiences and are often associated with distinct morphological traits. DNA methylation is an epigenetic mechanism which is both sensitive to environmental conditions and stably inherited across cell divisions. We therefore investigate early life predisposition in the round goby Neogobius melanostomus by growth back-calculations and then study DNA methylation by MBD-Seq in the brain region controlling vertebrate reproductive behavior, the hypothalamus. We find a link between the territorial reproductive phenotype and high growth rates in the first year of life. However, hypothalamic DNA methylation patterns reflect the current behavioral status independently of early life experiences. Together, our data suggest a non-predetermination scenario in the round goby, in which indeterminate males progress to a non-territorial status in the spawning season, and in which some males then assume a specialized territorial phenotype if current conditions are favorable.


Assuntos
Metilação de DNA , Hipotálamo/química , Perciformes/fisiologia , Territorialidade , Animais , Comportamento Animal/fisiologia , Epigênese Genética , Masculino , Perciformes/genética , Locos de Características Quantitativas , Reprodução , Análise de Sequência de DNA/veterinária
17.
Oncotarget ; 9(39): 25661-25680, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29876015

RESUMO

Destruxins, secondary metabolites of entomopathogenic fungi, exert a wide variety of interesting characteristics ranging from antiviral to anticancer effects. Although their mode of action was evaluated previously, the molecular mechanisms of resistance development are unknown. Hence, we have established destruxin-resistant sublines of HCT116 colon carcinoma cells by selection with the most prevalent derivatives, destruxin (dtx)A, dtxB and dtxE. Various cell biological and molecular techniques were applied to elucidate the regulatory mechanisms underlying these acquired and highly stable destruxin resistance phenotypes. Interestingly, well-known chemoresistance-mediating ABC efflux transporters were not the major players. Instead, in dtxA- and dtxB-resistant cells a hyper-activated mevalonate pathway was uncovered resulting in increased de-novo cholesterol synthesis rates and elevated levels of lanosterol, cholesterol as well as several oxysterol metabolites. Accordingly, inhibition of the mevalonate pathway at two different steps, using either statins or zoledronic acid, significantly reduced acquired but also intrinsic destruxin resistance. Vice versa, cholesterol supplementation protected destruxin-sensitive cells against their cytotoxic activity. Additionally, an increased cell membrane adhesiveness of dtxA-resistant as compared to parental cells was detected by atomic force microscopy. This was paralleled by a dramatically reduced ionophoric capacity of dtxA in resistant cells when cultured in absence but not in presence of statins. Summarizing, our results suggest a reduced ionophoric activity of destruxins due to cholesterol-mediated plasma membrane re-organization as molecular mechanism underlying acquired destruxin resistance in human colon cancer cells. Whether this mechanism might be valid also in other cell types and organisms exposed to destruxins e.g. as bio-insecticides needs to be evaluated.

18.
Mar Genomics ; 24 Pt 2: 131-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26421490

RESUMO

The advent of the genomic era has provided important and surprising insights into the deducted genetic composition of the common ancestor of cnidarians and bilaterians. This has changed our view of how genomes of metazoans evolve and when crucial gene families arose and diverged in animal evolution. Sequencing of several cnidarian genomes showed that cnidarians share a great part of their gene repertoire as well as genome synteny with vertebrates, with less gene losses in the anthozoan cnidarian lineage than for example in ecdysozoans like Drosophila melanogaster or Caenorhabditis elegans. The Hydra genome on the other hand has evolved more rapidly indicated by more divergent sequences, more cases of gene losses and many taxonomically restricted genes. Cnidarian genomes also contain a rich repertoire of transcription factors, including those that in bilaterian model organisms regulate the development of key bilaterian traits such as mesoderm, nervous system development and bilaterality. The sea anemone Nematostella vectensis, and possibly cnidarians in general, does not only share its complex gene repertoire with bilaterians, but also the regulation of crucial developmental regulatory genes via distal enhancer elements. In addition, epigenetic modifications on DNA and chromatin are shared among eumetazoans. This suggests that most conserved genes present in our genomes today, as well as the mechanisms guiding their expression, evolved before the divergence of cnidarians and bilaterians about 600 Myr ago.


Assuntos
Cnidários/genética , Regulação da Expressão Gênica/fisiologia , Genômica , Transcriptoma , Animais , Evolução Biológica
19.
J Clin Virol ; 27(2): 136-45, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829035

RESUMO

BACKGROUND: Tick borne encephalitis virus (TBEV), is a human flavivirus causing tick borne encephalitis (TBE), a viral infection of the central nervous system endemic in Europe and Asia. OBJECTIVES: To develop a reverse transcription polymerase chain reaction (RT-PCR) assay based on quantitative real-time RT-PCR technology (TaqMan) for detection and quantification of TBEV RNA. The test includes an internal control (IC) to avoid false negative results. STUDY DESIGN: The system was established and validated using wild-type (WT) non-infectious synthetic RNA representing a fragment of the 3' non-coding region of the TBEV genome. In addition, synthetic RNA differing from the WT synthetic RNA by a unique probe binding region was used as IC to monitor the overall efficiency of the RT-PCR. RESULTS: The analytical sensitivity of the assay was at least ten copies of the TBEV synthetic transcript in presence of 50 copies of the IC. Successful amplification was obtained for different strains within the TBEV complex (Hypr, Hochosterwitz, Laibach, Elsass=Alsace, ZZ9, Wladiwostok). Among 14 serum and 21 cerebrospinal fluid (CSF) samples obtained from 28 patients with clinical suspicion of TBEV 1 CSF sample tested positive for TBEV RNA. In addition, no TBEV RNA could be detected in blood samples obtained from three vaccinated people 1 and 3 days post-vaccination. Thus indicating that a positive result is unlikely to be caused by recent vaccination. CONCLUSIONS: A quantitative, highly sensitive and specific real-time RT-PCR assay has been developed for the detection of TBEV RNA. Inclusion of an IC is important to monitor the possible occurrence of false-negative results caused by the presence of inhibitory factors. This assay should be an important asset for the routine laboratory detection of TBEV RNA.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Regiões 3' não Traduzidas/genética , Sequência de Bases , Primers do DNA , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/sangue , Encefalite Transmitida por Carrapatos/líquido cefalorraquidiano , Humanos , Dados de Sequência Molecular , RNA Viral/sangue , RNA Viral/líquido cefalorraquidiano , RNA Viral/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Alinhamento de Sequência , Taq Polimerase/metabolismo
20.
Nat Struct Mol Biol ; 17(7): 894-900, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20562853

RESUMO

Histone modifications are thought to regulate gene expression in part by modulating DNA accessibility. Here, we measured genome-wide DNA accessibility in Drosophila melanogaster by combining M.SssI methylation footprinting with methylated DNA immunoprecipitation. We show that methylase accessibility demarcates differential distribution of active and repressive histone modifications as well as sites of transcription and replication initiation. DNA accessibility is increased at active promoters and chromosomal regions that are hyperacetylated at H4K16, particularly at the male X chromosome, suggesting that transcriptional dosage compensation is facilitated by permissive chromatin structure. Conversely, inactive chromosomal domains decorated with H3K27me3 are least accessible, supporting a model for Polycomb-mediated chromatin compaction. In addition, we detect higher accessibility at chromosomal regions that replicate early and at sites of replication initiation. Together, these findings indicate that differential histone-modification patterns and the organization of replication have distinct and measurable effects on the exposure of the DNA template.


Assuntos
Replicação do DNA , Drosophila melanogaster/genética , Genoma de Inseto , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Acetilação , Animais , Cromossomos/metabolismo , DNA/genética , DNA/metabolismo , Drosophila melanogaster/metabolismo , Proteínas do Grupo Polycomb
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA