Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 38(4): 589-603, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692025

RESUMO

BACKGROUND: Because human fetal ventral mesencephalic tissue grafts provide promising results in ameliorating Parkinson's disease-implicated motor dysfunctions, human fetal midbrain-derived dopamine neuronal precursor cells are considered good candidates for cell-based therapy for Parkinson's disease in that large quantities of cells can be supplied through a good manufacturing practice-compliant system. OBJECTIVE: We conducted a prospective, phase I/IIa, dose-escalation, open-label "first-in-human" clinical trial with fetal neural precursor cells to assess their safety and therapeutic efficacy in patients with idiopathic Parkinson's disease. METHODS: Fifteen patients were assigned to receive three different doses of cells (4 × 106 , 12 × 106 , and 40 × 106 cells) and completed a 12-month follow-up. The primary outcome was safety, by measuring the presence of grade 3 or higher cells according to National Cancer Institute guidelines and any contaminated cells. Secondary outcomes assessed motor and neurocognitive function, as well as the level of dopamine transporters, by positron emission tomography-computed tomography. RESULTS: Although a pronation-supination and hand/arm movement performance was remarkably enhanced in all three groups (all P < 0.05), the medium- and high-dose-treated groups exhibited significant improvement in Unified Parkinson's Disease Rating Scale Part III only up to 26.16% and 40%, respectively, at 12 months after transplantation without any serious clinical complications or graft-induced dyskinesia in all patients. However, the motor improvements did not correlate with increase in the dopamine transporter on positron emission tomography images. CONCLUSIONS: Our results primarily demonstrate the safety and plausible dose-dependent efficacy of human fetal midbrain-derived dopamine neuronal precursor cells for idiopathic Parkinson's disease. © 2023 International Parkinson and Movement Disorder Society.


Assuntos
Células-Tronco Neurais , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/tratamento farmacológico , Dopamina , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Mesencéfalo/diagnóstico por imagem
2.
Stem Cells ; 30(3): 570-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213586

RESUMO

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by retroviral overexpression of the transcription factors Oct4, Sox2, Klf4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk for chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC, albeit at lower efficiency. To elucidate the influence of factor reduction on subsequent differentiation, we compared the efficiency of neuronal differentiation in iPSC generated from postnatal murine neural stem cells with either one (Oct4; iPSC(1F-NSC) ), two (Oct4, Klf4; iPSC(2F-NSC) ), or all four factors (iPSC(4F-NSC) ) with those of embryonic stem cells (ESCs) and iPSC produced from fibroblasts with all four factors (iPSC(4F-MEF) ). After 2 weeks of coculture with PA6 stromal cells, neuronal differentiation of iPSC(1F-NSC) and iPSC(2F-NSC) was less efficient compared with iPSC(4F-NSC) and ESC, yielding lower proportions of colonies that stained positive for early and late neuronal markers. Electrophysiological analyses after 4 weeks of differentiation identified functional maturity in neurons differentiated from ESC, iPSC(2F-NSC) , iPSC(4F-NSC) , and iPSC(4F-MEF) but not in those from iPSC(1F-NSC) . Similar results were obtained after hematoendothelial differentiation on OP9 bone marrow stromal cells, where factor-reduced iPSC generated lower proportions of colonies with hematoendothelial progenitors than colonies of ESC, iPSC(4F-NSC) , and iPSC(4F-MEF) . We conclude that a reduction of reprogramming factors does not only reduce reprogramming efficiency but may also worsen subsequent differentiation and hinder future application of iPSC in cell replacement therapies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Animais , Antígenos de Diferenciação/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Fator 4 Semelhante a Kruppel , Potenciais da Membrana , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Células-Tronco Neurais/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Células Estromais/metabolismo , Células Estromais/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Methods ; 56(3): 452-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22433395

RESUMO

Central nervous system (CNS) disorders remain a formidable challenge for the development of efficient therapies. Cell and gene therapy approaches are promising alternatives that can have a tremendous impact by treating the causes of the disease rather than the symptoms, providing specific targeting and prolonged duration of action. Hampering translation of gene-based therapeutic treatments of neurodegenerative diseases from experimental to clinical gene therapy is the lack of valid and reliable pre-clinical models that can contribute to evaluate feasibility and safety. Herein we describe a robust and reproducible methodology for the generation of 3D in vitro models of the human CNS following a systematic technological approach based on stirred culture systems. We took advantage of human midbrain-derived neural progenitor cells (hmNPCs) capability to differentiate into the various neural phenotypes and of their commitment to the dopaminergic lineage to generate differentiated neurospheres enriched in dopaminergic neurons. Furthermore, we describe a protocol for efficient gene transfer into differentiated neurospheres using CAV-2 viral vectors and stable expression of the transgene for at least 10 days. CAV-2 vectors, derived from canine adenovirus type 2, are promising tools to understand and treat neurodegenerative diseases, in particular Parkinson's disease. CAV-2 vectors preferentially transduce neurons and have an impressive level of axonal retrograde transport in vivo. Our model provides a practical and versatile in vitro approach to study the CNS in a 3D cellular context. With the successful differentiation and subsequent genetic modification of neurospheres we are increasing the collection of tools available for neuroscience research and contributing for the implementation and widespread utilization of 3D cellular CNS models. These can be applied to study neurodegenerative diseases such as Parkinson's disease; to study the interaction of viral vectors of therapeutic potential within human neural cell populations, thus enabling the introduction of specific therapeutic genes for treatment of CNS pathologies; to study the fate and effect of delivered therapeutic genes; to study toxicological effects. Furthermore these methodologies may be extended to other sources of human neural stem cells, such as human pluripotent stem cells, including patient-derived induced pluripotent stem cells.


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios Dopaminérgicos/citologia , Células-Tronco Neurais/citologia , Diferenciação Celular , Humanos , Reprodutibilidade dos Testes , Transdução Genética
4.
Acta Neuropathol Commun ; 11(1): 40, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906636

RESUMO

The MAPT gene, encoding the microtubule-associated protein tau on chromosome 17q21.31, is result of an inversion polymorphism, leading to two allelic variants (H1 and H2). Homozygosity for the more common haplotype H1 is associated with an increased risk for several tauopathies, but also for the synucleinopathy Parkinson's disease (PD). In the present study, we aimed to clarify whether the MAPT haplotype influences expression of MAPT and SNCA, encoding the protein α-synuclein (α-syn), on mRNA and protein levels in postmortem brains of PD patients and controls. We also investigated mRNA expression of several other MAPT haplotype-encoded genes. Postmortem tissues from cortex of fusiform gyrus (ctx-fg) and of the cerebellar hemisphere (ctx-cbl) of neuropathologically confirmed PD patients (n = 95) and age- and sex-matched controls (n = 81) were MAPT haplotype genotyped to identify cases homozygous for either H1 or H2. Relative expression of genes was quantified using real-time qPCR; soluble and insoluble protein levels of tau and α-syn were determined by Western blotting. Homozygosity for H1 versus H2 was associated with increased total MAPT mRNA expression in ctx-fg regardless of disease state. Inversely, H2 homozygosity was associated with markedly increased expression of the corresponding antisense MAPT-AS1 in ctx-cbl. PD patients had higher levels of insoluble 0N3R and 1N4R tau isoforms regardless of the MAPT genotype. The increased presence of insoluble α-syn in PD patients in ctx-fg validated the selected postmortem brain tissue. Our findings in this small, but well controlled cohort of PD and controls support a putative biological relevance of tau in PD. However, we did not identify any link between the disease-predisposing H1/H1 associated overexpression of MAPT with PD status. Further studies are required to gain a deeper understanding of the potential regulatory role of MAPT-AS1 and its association to the disease-protective H2/H2 condition in the context of PD.


Assuntos
Predisposição Genética para Doença , Doença de Parkinson , Proteínas tau , Humanos , Encéfalo/metabolismo , Genótipo , Haplótipos , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Proteínas tau/genética
5.
Cells ; 10(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807497

RESUMO

BACKGROUND: Consecutive adult neurogenesis is a well-known phenomenon in the ventricular-subventricular zone of the lateral wall of the lateral ventricles (V-SVZ) and has been controversially discussed in so-called "non-neurogenic" brain areas such as the periventricular regions (PVRs) of the aqueduct and the fourth ventricle. Dopamine is a known modulator of adult neural stem cell (aNSC) proliferation and dopaminergic neurogenesis in the olfactory bulb, though a possible interplay between local dopaminergic neurodegeneration and induction of aNSC proliferation in mid/hindbrain PVRs is currently enigmatic. OBJECTIVE/HYPOTHESIS: To analyze the influence of chronic-progressive dopaminergic neurodegeneration on both consecutive adult neurogenesis in the PVRs of the V-SVZ and mid/hindbrain aNSCs in two mechanistically different transgenic animal models of Parkinson´s disease (PD). METHODS: We used Thy1-m[A30P]h α synuclein mice and Leu9'Ser hypersensitive α4* nAChR mice to assess the influence of midbrain dopaminergic neuronal loss on neurogenic activity in the PVRs of the V-SVZ, the aqueduct and the fourth ventricle. RESULTS: In both animal models, overall proliferative activity in the V-SVZ was not altered, though the proportion of B2/activated B1 cells on all proliferating cells was reduced in the V-SVZ in Leu9'Ser hypersensitive α4* nAChR mice. Putative aNSCs in the mid/hindbrain PVRs are known to be quiescent in vivo in healthy controls, and dopaminergic deficiency did not induce proliferative activity in these regions in both disease models. CONCLUSIONS: Our data do not support an activation of endogenous aNSCs in mid/hindbrain PVRs after local dopaminergic neurodegeneration. Spontaneous endogenous regeneration of dopaminergic cell loss through resident aNSCs is therefore unlikely.


Assuntos
Dopamina/deficiência , Mesencéfalo/fisiologia , Neurogênese , Animais , Proliferação de Células , Humanos , Ventrículos Laterais/fisiologia , Camundongos Endogâmicos C57BL , Receptores Nicotínicos/metabolismo , Rombencéfalo/fisiologia , alfa-Sinucleína/metabolismo
6.
Front Cell Dev Biol ; 9: 726866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532319

RESUMO

The H1 haplotype of the microtubule-associated protein tau (MAPT) gene is a common genetic risk factor for some neurodegenerative diseases such as progressive supranuclear palsy, corticobasal degeneration, and Parkinson's disease. The molecular mechanism causing the increased risk for the named diseases, however, remains unclear. In this paper, we present a valuable tool of eight small molecule neural precursor cell lines (smNPC) homozygous for the MAPT haplotypes (four H1/H1 and four H2/H2 cell lines), which can be used to identify MAPT-dependent phenotypes. The employed differentiation protocol is fast due to overexpression of NEUROGENIN-2 and therefore suitable for high-throughput approaches. A basic characterization of all human cell lines was performed, and their TAU and α-SYNUCLEIN profiles were compared during a differentiation time of 30 days. We could identify higher levels of conformationally altered TAU in cell lines carrying the H2 haplotype. Additionally, we found increased expression levels of α-SYNUCLEIN in H1/H1 cells. With this resource, we aim to fill a gap in neurodegenerative disease modeling with induced pluripotent stem cells (iPSC) for sporadic tauopathies.

7.
Front Cell Dev Biol ; 9: 561086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748099

RESUMO

Growing evidence suggests that epigenetic mechanisms like microRNA-mediated transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a well-established cell model of Parkinson's disease (PD), by next-generation sequencing. The expression levels of 23 miRNAs were significantly altered in α-synuclein-overexpressing cells, 11 were down- and 12 upregulated (P < 0.01; non-adjusted). The in silico analysis of known target genes of these miRNAs was complemented by the inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1 cell cycle genes were found to be significantly altered upon α-synuclein overexpression, with five genes up- (CCND1, CCND2, and CDK4 at P < 0.01; E2F3, MYC at P < 0.05) and one gene downregulated (CDKN1C at P < 0.001). Additionally, several of these altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The present findings suggest that α-synuclein accumulation induces microRNA-mediated aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets for PD.

8.
Nat Cell Biol ; 23(6): 652-663, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34083785

RESUMO

Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.


Assuntos
Processamento Alternativo , Fatores de Transcrição Forkhead/metabolismo , Ensaios de Triagem em Larga Escala , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas tau/metabolismo , Sistemas CRISPR-Cas , Éxons , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , Isoformas de Proteínas , Proteoma , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Análise de Célula Única , Proteínas tau/genética
9.
J Neurochem ; 111(1): 204-16, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19659571

RESUMO

Human midbrain-derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson's disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors. In whole-cell patch-clamp recordings, l-glutamate and NMDA elicited currents in 93% of NPCs after 3 weeks of differentiation in vitro. The concentration-response plots of differentiated NPCs yielded an EC(50) of 2.2 microM for glutamate and an EC(50) of 36 microM for NMDA. Glutamate-induced currents were markedly inhibited by memantine in contrast to 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) suggesting a higher density of functional NMDA than alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptors. NMDA-evoked currents and calcium signals were blocked by the NR2B-subunit specific antagonist ifenprodil indicating functional expression of NMDA receptors containing subunits NR1 and NR2B. In calcium imaging experiments, the blockade of voltage-gated calcium channels by verapamil abolished AMPA-induced calcium responses but only partially reduced NMDA-evoked transients suggesting the expression of calcium-impermeable, GluR2-containing AMPA receptors. Quantitative real-time PCR showed a predominant expression of subunits NR2A and NR2B (NMDA), GluR2 (AMPA), GluR7 (kainate), and mGluR3 (metabotropic glutamate receptor). Treatment of NPCs with 100 microM NMDA in vitro during proliferation (2 weeks) and differentiation (1 week) increased the amount of tyrosine hydroxylase-immunopositive cells significantly, which was reversed by addition of memantine. These data suggest that NMDA receptors in differentiating human mesencephalic NPCs are important regulators of dopaminergic neurogenesis in vitro.


Assuntos
Dopamina/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Mesencéfalo/citologia , N-Metilaspartato/farmacologia , Neurogênese/efeitos dos fármacos , Receptores de Glutamato/fisiologia , Cálcio/metabolismo , Células Cultivadas , Feto , Ácido Glutâmico/farmacologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mesencéfalo/embriologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos
10.
J Neurosci Methods ; 178(1): 15-23, 2009 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-19059435

RESUMO

Human neural progenitor cells (hNPCs) are a promising source to treat various neurodegenerative diseases. Potential applications are to use such cells for reprogramming to induce pluripotent stem cells or for secretion of proteins into the brain. These applications usually involve expression of heterologously expressed genes which is difficult to achieve in hNPCs. We tested several protocols for non-viral gene transfer and different promoters. Nucleofection and the cytomegalovirus enhancer/chicken beta-actin promoter allowed expression of foreign genes in hNPCs for up to 6 months. Treatment with the antibiotic G418 enabled us to select stably transfected cells which were subcloned and continued to express the NPC marker nestin. Differentiation of stably nucleofected hNPCs revealed that multipotency was maintained following long-term expansion of subcloned hNPCs. After differentiation for 3 weeks in vitro or in vivo following striatal transplantations transfected hNPCs expressed voltage-gated sodium channels suggesting the development of functional properties during neuronal maturation. In conclusion, stably nucleofected hNPCs can be isolated, subcloned, and expanded for up to 6 months without loss of their differentiation potential. These data provide a basis for future studies using hNPCs to investigate the neuronal differentiation in vivo after transplantation, the feasibility as a vector for gene (protein) therapy, and the induction of pluripotent stem cells.


Assuntos
Células-Tronco Embrionárias/fisiologia , Expressão Gênica/fisiologia , Vetores Genéticos/fisiologia , Neurônios/fisiologia , Transfecção/métodos , Encéfalo/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Feto , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Humanos , Lentivirus/fisiologia , Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Transplante de Células-Tronco/métodos , Fatores de Tempo
11.
Prog Neurobiol ; 180: 101644, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238088

RESUMO

Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Humanos , Neuropatologia/métodos
12.
Neuron ; 38(6): 941-52, 2003 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-12818179

RESUMO

Regulators of G protein signaling (RGS) modulate heterotrimeric G proteins in part by serving as GTPase-activating proteins for Galpha subunits. We examined a role for RGS9-2, an RGS subtype highly enriched in striatum, in modulating dopamine D2 receptor function. Viral-mediated overexpression of RGS9-2 in rat nucleus accumbens (ventral striatum) reduced locomotor responses to cocaine (an indirect dopamine agonist) and to D2 but not to D1 receptor agonists. Conversely, RGS9 knockout mice showed heightened locomotor and rewarding responses to cocaine and related psychostimulants. In vitro expression of RGS9-2 in Xenopus oocytes accelerated the off-kinetics of D2 receptor-induced GIRK currents, consistent with the in vivo data. Finally, chronic cocaine exposure increased RGS9-2 levels in nucleus accumbens. Together, these data demonstrate a functional interaction between RGS9-2 and D2 receptor signaling and the behavioral actions of psychostimulants and suggest that psychostimulant induction of RGS9-2 represents a compensatory adaptation that diminishes drug responsiveness.


Assuntos
Dopamina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Proteínas RGS/fisiologia , Transdução de Sinais , Animais , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Corpo Estriado/fisiologia , Condutividade Elétrica , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/química , Oócitos/metabolismo , Canais de Potássio/fisiologia , Proteínas RGS/análise , Proteínas RGS/deficiência , Proteínas RGS/genética , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/fisiologia , Transfecção , Xenopus
13.
J Neurochem ; 107(4): 1056-69, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18796004

RESUMO

GABA(A) receptor function is involved in regulating proliferation, migration, and differentiation of rodent neural progenitor cells (NPCs). However, little is known about the molecular composition and functional relevance of GABA(A) receptors in human neural progenitors. Here, we investigated human fetal midbrain-derived NPCs in respect to their GABA(A) receptor function and subunit expression using electrophysiology, calcium imaging, and quantitative real-time PCR. Whole-cell recordings of ligand- and voltage-gated ion channels demonstrate the ability of NPCs to generate action potentials and to express functional GABA(A) receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular characterizations indicate a predominance of GABA(A) receptor heteromers containing subunits alpha2, beta1, and/or beta3, and gamma. Intracellular Ca(2+) measurements and the expression profile of the Na(+)-K(+)-Cl(-) co-transporter 1 and the K(+)-Cl(-) co-transporter 2 in differentiated NPCs suggest that GABA evokes depolarizations mediated by GABA(A) receptors. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential GABA(A) receptor properties during neuronal maturation in vitro.


Assuntos
Células-Tronco Fetais/fisiologia , Potenciais da Membrana/fisiologia , Mesencéfalo/citologia , Neurônios/fisiologia , Receptores de GABA/fisiologia , Cálcio , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Células-Tronco Fetais/efeitos dos fármacos , GABAérgicos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Indóis , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/metabolismo , Receptores de GABA/classificação , Receptores de GABA/genética , Bloqueadores dos Canais de Sódio/farmacologia , Tetraetilamônio/farmacologia , Tetrodotoxina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/farmacologia
14.
Stem Cells Dev ; 27(14): 976-984, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29779467

RESUMO

Voltage-gated sodium and calcium channels as well as transient receptor potential (TRP) channels are expressed during the differentiation of human neural progenitor cells (hNPCs) and are likely to be involved in regulating neurogenesis. However, the molecular composition of these ion channels in proliferating and differentiating hNPCs is largely unknown. In this study, we investigated fetal mesencephalic hNPCs in respect to their sodium, calcium, and TRP channel subunit expression and function. Quantitative real-time polymerase chain reaction indicated a significant upregulation of voltage-gated sodium and calcium channel subunits in hNPCs after differentiation for 3 weeks in vitro. In contrast, the TRP channel expression did not increase significantly during hNPC maturation. Intracellular Ca2+ measurements showed the marked reduction of KCl-induced Ca2+ transients through inhibition of voltage-gated Ca2+ channels by verapamil and mibefradil in differentiated hNPCs. Application of TRP channel agonists induced intracellular Ca2+ peaks already in proliferating hNPCs without affecting their cell division. The coincubation of hNPCs with TRP channel agonists pregnenolone sulfate or RN1747 did not have any significant effect on their proliferation and differentiation. These data indicate that hNPCs derived from fetal midbrain tissue acquire essential voltage-gated sodium and calcium channel properties during neuronal maturation in vitro. An early role of TRP channels in neurogenesis which may be important for regenerative clinical applications or cellular models could not be elucidated using hNPCs.


Assuntos
Canais de Cálcio/genética , Células-Tronco Neurais/metabolismo , Células-Tronco/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feto , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Pregnenolona/farmacologia , Células-Tronco/efeitos dos fármacos , Sulfonamidas/farmacologia , Canal de Cátion TRPA1/genética
15.
Nat Commun ; 9(1): 2929, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050033

RESUMO

Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Proteínas de Homeodomínio/metabolismo , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Fatores de Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Fatores de Transcrição/genética , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Stem Cells Dev ; 16(4): 625-35, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17784836

RESUMO

The potential application of neural precursor cells (NPCs) in brain repair of neurodegenerative diseases has placed the factors capable of stimulating neurogenesis under increasing attention. Among these factors are dopamine (DA) D2/D3 receptor agonists, like 7-hydroxy-dipropylaminotetralin (7-OH-DPAT). The purpose of this investigation was to explore proliferating and neurostimulating effects of this drug in murine and human NPCs derived from the fetal midbrain. In both cell types, dopamine D2 and D3 receptors were detected by microarray data analysis and quantitative RT-PCR. Despite D2/D3 receptors expression, treatment with 7-OH-DPAT did not affect proliferation, survival, or neurogenesis of murine and human NPCs. Our data question the relevance of neuroregenerative effects of dopamine agonists for human predopaminergic cells as well as patients with Parkinson's disease.


Assuntos
Dopamina/fisiologia , Mesencéfalo/fisiologia , Neurônios/citologia , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Células-Tronco/citologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Sobrevivência Celular , Agonistas de Dopamina/farmacologia , Feto , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Mesencéfalo/embriologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D3/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
FASEB J ; 20(7): 935-46, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16675851

RESUMO

We describe an inducible genetic model for degeneration of midbrain dopaminergic neurons in adults. In previous studies, knock-in mice expressing hypersensitive M2 domain Leu9'Ser (L9'S) alpha4 nicotinic receptors (nAChR) at near-normal levels displayed dominant neonatal lethality and dopaminergic deficits in embryonic midbrain, because the hypersensitive nAChR is excitotoxic. However, heterozygous L9'S mice that retain the neomycin resistance cassette (neo) in a neighboring intron express low levels of the mutant allele (approximately 25% of normal levels), and these neo-intact mice are therefore viable and fertile. The neo cassette is flanked by loxP sites. In adult animals, we locally injected helper-dependent adenovirus (HDA) expressing cre recombinase. Local excision of the neo cassette, via cre-mediated recombination, was verified by genomic analysis. In L9'S HDA-cre injected animals, locomotion was reduced both under baseline conditions and after amphetamine application. There was no effect in L9'S HDA-control treated animals or in wild-type (WT) littermates injected with either virus. Immunocytochemical analyses revealed marked losses (> 70%) of dopaminergic neurons in L9'S HDA-cre injected mice compared to controls. At 20-33 days postinjection in control animals, the coexpressed marker gene, yellow fluorescent protein (YFP), was expressed in many neurons and few glial cells near the injection, emphasizing the neurotropic utility of the HDA. Thus, HDA-mediated gene transfer into adult midbrain induced sufficient functional expression of cre in dopaminergic neurons to allow for postnatal deletion of neo. This produced increased L9'S mutant nAChR expression, which in turn led to nicotinic cholinergic excitotoxicity in dopaminergic neurons.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Substância Negra/patologia , Adenoviridae , Animais , Animais Geneticamente Modificados , Morte Celular , Regulação da Expressão Gênica , Locomoção/fisiologia , Camundongos
18.
J Tissue Eng Regen Med ; 11(3): 751-764, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-25641599

RESUMO

Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/transplante , Medula Espinal/citologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Linhagem da Célula , Modelos Animais de Doenças , Progressão da Doença , Humanos , Injeções Espinhais , Camundongos Transgênicos , Atividade Motora , Células-Tronco Neurais/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transplante de Células-Tronco , Análise de Sobrevida
19.
Stem Cells Transl Med ; 6(2): 576-588, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191758

RESUMO

We have developed a good manufacturing practice for long-term cultivation of fetal human midbrain-derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region-specific human neural stem cell lines such as human embryonic stem cells and human inducible pluripotent stem cells. We cultivated 3 different midbrain neural progenitor lines at 10, 12, and 14 weeks of gestation for more than a year and characterized them in great detail, as well as in comparison with Lund mesencephalic cells. The whole cultivation process of tissue preparation, cultivation, and cryopreservation was developed using strict serum-free conditions and standardized operating protocols under clean-room conditions. Long-term-cultivated midbrain-derived neural progenitor cells retained stemness, midbrain fate specificity, and floorplate markers. The potential to differentiate into authentic A9-specific dopaminergic neurons was markedly elevated after prolonged expansion, resulting in large quantities of functional dopaminergic neurons without genetic modification. In restorative cell therapeutic approaches, midbrain-derived neural progenitor cells reversed impaired motor function in rodents, survived well, and did not exhibit tumor formation in immunodeficient nude mice in the short or long term (8 and 30 weeks, respectively). We conclude that midbrain-derived neural progenitor cells are a promising source for human dopaminergic neurons and suitable for long-term expansion under good manufacturing practice, thus opening the avenue for restorative clinical applications or robust cellular models such as high-content or high-throughput screening. Stem Cells Translational Medicine 2017;6:576-588.


Assuntos
Proliferação de Células , Neurônios Dopaminérgicos/fisiologia , Mesencéfalo/embriologia , Células-Tronco Neurais/fisiologia , Neurogênese , Transtornos Parkinsonianos/cirurgia , Transplante de Células-Tronco/métodos , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Idade Gestacional , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Atividade Motora , Células-Tronco Neurais/metabolismo , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/fisiopatologia , Fenótipo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medição de Risco , Transplante de Células-Tronco/efeitos adversos , Teratoma/etiologia , Teratoma/patologia , Fatores de Tempo
20.
Parkinsonism Relat Disord ; 12(5): 302-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16621663

RESUMO

Neural precursor cells (NPC) may provide a source for restaurative therapy. We wanted to study the immunogenic potential of human NPC. We transplanted human NPCs with or without cyclosporine A (10 mg/kg) expanded in serum-free conditions into the striatum of rats unilaterally lesioned with 6-hydroxydopamine. Four months after transplantation, there was significant improvement of amphetamine-induced rotational behavior 9 non-immunosuppressed (13.1+/-4.9 pre vs 8.5+/-4.0 after grafting) but nor for 11 animals immunosuppressed with CyA (12.3+/-1.7 vs 11.3+/-2.8). The number of TH-IR cells was comparable in both groups (1,580+/-700 vs 1,274+/-295). All grafted animals only showed mild activation of astrocytes and macrophages within the graft. There was no evidence for tumor formation. Immunosuppression of rats, xenotransplanted with human NPC did not improve graft survival or function.


Assuntos
Ciclosporina/uso terapêutico , Imunossupressores/uso terapêutico , Neurônios/transplante , Transplante de Células-Tronco , Transplante Heterólogo , Anfetamina/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Proliferação de Células , Inibidores da Captação de Dopamina/toxicidade , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Ativação de Macrófagos/efeitos dos fármacos , Mesencéfalo/citologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Neurônios/imunologia , Oxidopamina , Ratos , Rotação , Comportamento Estereotipado/efeitos dos fármacos , Simpatectomia Química , Simpatolíticos , Transplante Heterólogo/imunologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA