Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(6): e3001659, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35658004

RESUMO

In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activity-dependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrin-independent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations.


Assuntos
Endocitose , Sinapses , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Camundongos , Neurônios/fisiologia , Sinapses/metabolismo
2.
EMBO Rep ; 23(3): e53135, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942054

RESUMO

Alternative splicing is a potent modifier of protein function. Stromal interaction molecule 1 (Stim1) is the essential activator of store-operated Ca2+ entry (SOCE) triggering activation of transcription factors. Here, we characterize Stim1A, a splice variant with an additional 31 amino acid domain inserted in frame within its cytosolic domain. Prominent expression of exon A is found in astrocytes, heart, kidney, and testes. Full-length Stim1A functions as a dominant-negative regulator of SOCE and ICRAC, facilitating sequence-specific fast calcium-dependent inactivation and destabilizing gating of Orai channels. Downregulation or absence of native Stim1A results in increased SOCE. Despite reducing SOCE, Stim1A leads to increased NFAT translocation. Differential proteomics revealed an interference of Stim1A with the cAMP-SOCE crosstalk by altered modulation of phosphodiesterase 8 (PDE8), resulting in reduced cAMP degradation and increased PIP5K activity, facilitating NFAT activation. Our study uncovers a hitherto unknown mechanism regulating NFAT activation and indicates that cell-type-specific splicing of Stim1 is a potent means to regulate the NFAT signalosome and cAMP-SOCE crosstalk.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína ORAI1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
3.
PLoS Biol ; 17(9): e3000445, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31536487

RESUMO

Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, reduces the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (HFS). In contrast, primary TRPC5 channel-expressing neurons, identified by a novel TRPC5-τ-green fluorescent protein (τGFP) knockin mouse line, show strong short-term enhancement (STE) of synaptic signaling during HFS, indicating a key role of TRPC5 in short-term plasticity. Lentiviral expression of either TRPC1 or TRPC5 turns classic synaptic depression of wild-type neurons into STE, demonstrating that TRPCs are instrumental in regulating synaptic plasticity. Presynaptic Ca2+ imaging shows that TRPC activity strongly boosts synaptic Ca2+ dynamics, showing that TRPC channels provide an additional presynaptic Ca2+ entry pathway, which efficiently regulates synaptic strength and plasticity.


Assuntos
Sinalização do Cálcio , Plasticidade Neuronal , Canais de Cátion TRPC/fisiologia , Animais , Canais de Cálcio/metabolismo , Feminino , Glutamina/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos Knockout , Neurônios/metabolismo
4.
EMBO J ; 36(18): 2770-2789, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28790178

RESUMO

Canonical transient receptor potential (TRPC) channels influence various neuronal functions. Using quantitative high-resolution mass spectrometry, we demonstrate that TRPC1, TRPC4, and TRPC5 assemble into heteromultimers with each other, but not with other TRP family members in the mouse brain and hippocampus. In hippocampal neurons from Trpc1/Trpc4/Trpc5-triple-knockout (Trpc1/4/5-/-) mice, lacking any TRPC1-, TRPC4-, or TRPC5-containing channels, action potential-triggered excitatory postsynaptic currents (EPSCs) were significantly reduced, whereas frequency, amplitude, and kinetics of quantal miniature EPSC signaling remained unchanged. Likewise, evoked postsynaptic responses in hippocampal slice recordings and transient potentiation after tetanic stimulation were decreased. In vivo, Trpc1/4/5-/- mice displayed impaired cross-frequency coupling in hippocampal networks and deficits in spatial working memory, while spatial reference memory was unaltered. Trpc1/4/5-/- animals also exhibited deficiencies in adapting to a new challenge in a relearning task. Our results indicate the contribution of heteromultimeric channels from TRPC1, TRPC4, and TRPC5 subunits to the regulation of mechanisms underlying spatial working memory and flexible relearning by facilitating proper synaptic transmission in hippocampal neurons.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo , Multimerização Proteica , Transmissão Sináptica , Canais de Cátion TRPC/metabolismo , Animais , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Canais de Cátion TRPC/genética
5.
Arch Orthop Trauma Surg ; 140(2): 275-282, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31691837

RESUMO

INTRODUCTION: Instabilities of the thumb carpometacarpal (CMC) joint, caused by idiopathic ligamentous hyperlaxity, trauma or other conditions may lead to pain, functional impairment and eventually osteoarthritis. Several techniques have been described to enhance stability of the CMC 1. The aim of this study was to evaluate postoperative outcomes after CMC 1 joint stabilization using a soft-tissue procedure in patients with chronic instability. MATERIALS AND METHODS: This study was designed as a retrospective study with a single follow-up visit after a minimum of 1 year postoperatively. All patients who underwent stabilization of the CMC 1 with an abductor pollicis longus (APL) tendon strip for chronic, habitual instability were re-assessed using clinical examination, dedicated outcome scores [Visual Analogue Scale (VAS); The Disability of the Arm, Shoulder and Hand (DASH) score; Nelson score; Kapandji opposition score], grip and pinch strength measurements, and radiographic examination. RESULTS: 12 patients (15 operated thumbs) with a mean age at surgery of 23.2 (± 9.3) years were included after a mean follow-up period of 3.5 (± 1.3) years. The postoperative outcomes indicated excellent results, with a mean DASH score of 13.3 (± 11.3), VAS 1.1 at rest (and 2.8 during stress) and Nelson score of 87.7 (± 11.3). Postoperative grip, pinch strength and passive stability were not significantly different between operated and non-operated sides (p = 0.852; p = 0.923 and p = 0.428, respectively). We observed one case of recurrent instability besides no other complications. However, patients with trapezium hypoplasia (5 of 12) were more prone to signs of radiographic instability during stress testing. CONCLUSIONS: Thumb carpometacarpal stabilization with an APL tendon strip yielded excellent clinical outcomes and low morbidity in the mid-term. However, long-term follow-up is needed to assess specifically whether patients with trapezium hypoplasia may be more prone to clinical symptom recurrence than those with normal anatomy. LEVEL OF EVIDENCE: Level IV.


Assuntos
Artroplastia , Articulações Carpometacarpais/cirurgia , Instabilidade Articular/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Complicações Pós-Operatórias/diagnóstico , Polegar/cirurgia , Adulto , Artroplastia/efeitos adversos , Artroplastia/métodos , Feminino , Humanos , Masculino , Avaliação de Processos e Resultados em Cuidados de Saúde , Procedimentos de Cirurgia Plástica/efeitos adversos , Recuperação de Função Fisiológica , Estudos Retrospectivos , Transferência Tendinosa/métodos
6.
J Mol Cell Cardiol ; 135: 79-89, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419438

RESUMO

The identification of spatiotemporally restricted Ca2+ signals, Ca2+ sparks, was instrumental for our understanding of cardiac Ca2+ homeostasis. High-speed 2D confocal imaging enables acquisition of such Ca2+ sparks with high-content information but their full appreciation is constrained by the lack of unbiased and easy-to-use analysis tools. We developed a software toolset for unbiased and automatic Ca2+ spark analysis for huge data sets of subcellular Ca2+ signals. iSpark was developed to be scanner and detector independent. In myocytes from hearts subjected to various degrees of hypertrophy we acquired >5.000.000 Ca2+ sparks from 14 mice. The iSpark-enabled analysis of this large Ca2+ spark data set showed that the highly organized distribution of Ca2+ sparks present in healthy cells disarrayed concomitant with the development of aberrant transverse tubules and disease severity. Thus, iSpark represents a versatile and universal tool for analyzing local Ca2+ signaling in healthy as well as diseased, aberrant local Ca2+ signal transduction. The results from the unbiased analysis of large data sets provide a deeper insight into possible mechanisms contributing to the onset and progression of cardiac diseases such as hypertrophy.


Assuntos
Sinalização do Cálcio , Processamento de Imagem Assistida por Computador , Miócitos Cardíacos/metabolismo , Software , Animais , Camundongos , Microscopia de Fluorescência , Miócitos Cardíacos/citologia
7.
Eur J Nutr ; 55(1): 237-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25648736

RESUMO

PURPOSE: We compared the effects of a eucaloric moderate-fat diet (18% protein, 36% fat, and 46% carbohydrate), a eucaloric low-fat high-carbohydrate diet (18% protein, 18% fat, and 64% carbohydrate), and a low-calorie (33% reduced) low-fat high-carbohydrate diet on biomarkers of systemic inflammation. METHODS: We randomly assigned 102 participants (age 21-76 years and BMI 19.2-35.5 kg/m(2)) to the three different diets for 6 weeks in a parallel design intervention trial. All foods were provided. Ninety-three participants completed all study procedures; 92 were included in the analyses. Endpoints included plasma C-reactive protein (CRP), interleukin-6 (IL-6), soluble tumor necrosis factor receptors I and II (sTNFRI and II), and adiponectin. RESULTS: In the unadjusted primary analyses, none of the endpoints were differentially affected by the dietary interventions despite the significantly greater reductions in body weight and fat mass in participants consuming the low-calorie low-fat diet compared to the eucaloric diets (p < 0.001). When including weight change in the model in secondary analysis, adiponectin tended to be increased with weight loss (time × weight change interaction, p = 0.051). Adjusted for weight change, adiponectin was reduced in the groups consuming the low-fat diets relative to the moderate-fat diet (p = 0.008). No effect of the intervention diets or weight loss on CRP, IL-6, or sTNFRI and II was seen in these secondary analyses. CONCLUSIONS: In relatively healthy adults, moderate weight loss had minimal effects on systemic inflammation, and raised plasma adiponectin only modestly. A lower dietary fat and higher carbohydrate content had little impact on measures of systemic inflammation, but reduced adiponectin concentrations compared to a moderate-fat diet. The latter may be of concern given the consistent and strong inverse association of plasma adiponectin with many chronic diseases.


Assuntos
Adiponectina/sangue , Dieta com Restrição de Gorduras , Carboidratos da Dieta/administração & dosagem , Inflamação/sangue , Adulto , Idoso , Biomarcadores/sangue , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Restrição Calórica , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Feminino , Humanos , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Adulto Jovem
8.
J Nutr ; 144(11): 1850-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25165394

RESUMO

BACKGROUND: Isothiocyanates in cruciferous vegetables modulate signaling pathways critical to carcinogenesis, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a central regulator of inflammation. Glutathione S-transferase (GST) M1 and GSTT1 metabolize isothiocyanates; genetic variants may result in differences in biologic response. OBJECTIVE: The objective of this study was to test whether consumption of cruciferous or cruciferous plus apiaceous vegetables altered serum concentrations of interleukin (IL)-6, IL-8, C-reactive protein (CRP), tumor necrosis factor (TNF) α, and soluble TNF receptor (sTNFR) I and II, and whether this response was GSTM1/GSTT1 genotype dependent. METHODS: In a randomized crossover trial, healthy men (n = 32) and women (n = 31) aged 20-40 y consumed 4 14-d controlled diets: basal (vegetable-free), single-dose cruciferous (1xC) [7 g vegetables/kg body weight (BW)], double-dose cruciferous (2xC) (14 g/kg BW), and cruciferous plus apiaceous (carrot family) (1xC+A) vegetables (7 and 4 g/kg BW, respectively), with a 21-d washout period between each intervention. Urinary isothiocyanate excretion was also evaluated as a marker of systemic isothiocyanate exposure. Fasting morning blood and urine samples were collected on days 0 and 14 and analyzed. RESULTS: IL-6 concentrations were significantly lower on day 14 of the 2xC and 1xC+A diets than with the basal diet [-19% (95% CI: -30%, -0.1%) and -20% (95% CI: -31%, -0.7%), respectively]. IL-8 concentrations were higher after the 1xC+A diet (+16%; 95% CI: 4.2%, 35.2%) than after the basal diet. There were no effects of diet on CRP, TNF-α, or sTNFRI or II. There were significant differences between GSTM1-null/GSTT1+ individuals for several biomarkers in response to 1xC+A compared with basal diets (CRP: -37.8%; 95% CI: -58.0%, -7.4%; IL-6: -48.6%; 95% CI: -49.6%, -12.0%; IL-8: 16.3%; 95% CI: 6.7%, 57.7%) and with the 2xC diet compared with the basal diet (IL-8: -33.2%; 95% CI: -43.0%, -1.4%; sTNFRI: -7.5%; 95% CI: -12.7%, -2.3%). There were no significant reductions in biomarker concentrations in response to diet among GSTM1+/GSTT1+ or GSTM1-null/GSTT1-null individuals. Twenty-four-hour urinary isothiocyanate excretion was not associated with any of the inflammation markers overall; however, IL-6 was inversely associated with total isothiocyanate excretion in GSTM1-null/GSTT1-null individuals (ß = -0.12; 95% CI: -0.19, -0.05). CONCLUSIONS: In this young, healthy population, consumption of cruciferous and apiaceous vegetables reduced circulating IL-6; however, results for other biomarkers of inflammation were not consistent.


Assuntos
Brassicaceae , Dieta , Inflamação/metabolismo , Verduras , Adulto , Biomarcadores , Estudos Cross-Over , Feminino , Regulação da Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Inflamação/sangue , Masculino , Adulto Jovem
9.
J Neurosci ; 32(45): 15983-97, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136435

RESUMO

Trans-soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes formed between the SNARE motifs of synaptobrevin II, SNAP-25, and syntaxin play an essential role in Ca(2+)-regulated exocytosis. Apart from the well studied interactions of the SNARE domains, little is known about the functional relevance of other evolutionarily conserved structures in the SNARE proteins. Here, we show that substitution of two highly conserved tryptophan residues within the juxtamembrane domain (JMD) of the vesicular SNARE Synaptobrevin II (SybII) profoundly impairs priming of granules in mouse chromaffin cells without altering catecholamine release from single vesicles. Using molecular dynamic simulations of membrane-embedded SybII, we show that Trp residues of the JMD influence the electrostatic surface potential by controlling the position of neighboring lysine and arginine residues at the membrane-water interface. Our observations indicate a decisive role of the tryptophan moiety of SybII in keeping the vesicles in the release-ready state and support a model wherein tryptophan-mediated protein-lipid interactions assist in bridging the apposing membranes before fusion.


Assuntos
Membrana Celular/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Triptofano/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Células Cultivadas , Exocitose/fisiologia , Camundongos , Camundongos Knockout , Proteínas SNARE/genética , Vesículas Secretórias/genética , Triptofano/genética , Proteína 2 Associada à Membrana da Vesícula/genética
10.
Br J Nutr ; 110(10): 1760-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23657156

RESUMO

Metabolomic profiles were used to characterise the effects of consuming a high-phytochemical diet compared with a diet devoid of fruits and vegetables (F&V) in a randomised trial and cross-sectional study. In the trial, 8 h fasting urine from healthy men (n 5) and women (n 5) was collected after a 2-week randomised, controlled trial of two diet periods: a diet rich in cruciferous vegetables, citrus and soya (F&V), and a fruit- and vegetable-free (basal) diet. Among the ions found to differentiate the diets, 176 were putatively annotated with compound identifications, with forty-six supported by MS/MS fragment evidence. Metabolites more abundant in the F&V diet included markers of the dietary intervention (e.g. crucifers, citrus and soya), fatty acids and niacin metabolites. Ions more abundant in the basal diet included riboflavin, several acylcarnitines and amino acid metabolites. In the cross-sectional study, we compared the participants based on the tertiles of crucifers, citrus and soya from 3 d food records (n 36) and FFQ (n 57); intake was separately divided into the tertiles of total fruit and vegetable intake for FFQ. As a group, ions individually differential between the experimental diets differentiated the observational study participants. However, only four ions were significant individually, differentiating the third v. first tertile of crucifer, citrus and soya intake based on 3 d food records. One of these ions was putatively annotated: proline betaine, a marker of citrus consumption. There were no ions significantly distinguishing tertiles by FFQ. The metabolomic assessment of controlled dietary interventions provides a more accurate and stronger characterisation of the diet than observational data.


Assuntos
Brassicaceae , Citrus , Dieta , Glycine max , Metaboloma , Avaliação Nutricional , Compostos Fitoquímicos/urina , Adulto , Biomarcadores/urina , Carnitina/análogos & derivados , Carnitina/urina , Estudos Transversais , Registros de Dieta , Ácidos Graxos/urina , Comportamento Alimentar , Feminino , Frutas , Humanos , Íons/urina , Masculino , Metabolômica , Niacina/urina , Prolina/análogos & derivados , Prolina/urina , Riboflavina/urina , Inquéritos e Questionários , Verduras , Adulto Jovem
11.
J Nutr ; 142(2): 369-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190020

RESUMO

Low-glycemic load (GL) diets improve insulin resistance and glucose homeostasis in individuals with diabetes. Less is known about whether low-GL diets, independent of weight loss, improve the health profile for persons without diabetes or other preexisting conditions. We conducted a randomized, cross-over feeding study testing low- compared to High-GL diets on biomarkers of inflammation and adiposity in healthy adults. Eighty participants (n = 40 with BMI 18.5-24.9 kg/m²; n = 40 with BMI 28.0-40.0 kg/m²) completed two 28-d feeding periods in random order where one period was a high-GL diet (mean GL/d = 250) and the other a low-GL diet (mean GL/d = 125). Diets were isocaloric with identical macronutrient content (as percent energy). All food was provided and participants maintained weight and usual physical activity. Height, weight, and DXA were measured at study entry and weight assessed again thrice per week. Blood was drawn from fasting participants at the beginning and end of each feeding period and serum concentrations of high-sensitivity CRP, serum amyloid A, IL-6, leptin, and adiponectin were measured. Linear mixed models tested the intervention effect on the biomarkers; models were adjusted for baseline biomarker concentrations, diet sequence, feeding period, age, sex, and body fat mass. Among participants with high-body fat mass (>32.0% for males and >25.0% for females), the low-GL diet reduced CRP (P = 0.02) and marginally increased adiponectin (P = 0.06). In conclusion, carbohydrate quality, independent of energy, is important. Dietary patterns emphasizing low-GL foods may improve the inflammatory and adipokine profiles of overweight and obese individuals.


Assuntos
Adiponectina/metabolismo , Proteína C-Reativa/metabolismo , Dieta , Índice Glicêmico , Sobrepeso/metabolismo , Adiponectina/genética , Adolescente , Adulto , Biomarcadores , Estudos Cross-Over , Feminino , Análise de Alimentos , Regulação da Expressão Gênica , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Interleucina-6/metabolismo , Leptina/sangue , Leptina/genética , Leptina/metabolismo , Masculino , Adulto Jovem
12.
Nutr Cancer ; 64(5): 666-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22564018

RESUMO

Effective strategies for reducing food intake are needed to reduce risk of obesity-related cancers. We investigated the effect of low and high glycemic load (GL) diets on satiety and whether satiety varied by body mass index (BMI), gender, and serum leptin. Eighty normal weight (BMI = 18.5-24.9 kg/m²) and overweight/ obese (BMI = 28.0-40.0 kg/m²) adults participated in a randomized, crossover controlled feeding study testing low GL vs. high GL diets. The 28-day diets were isocaloric with identical macronutrient distributions, differing only in GL and fiber. Participants completed visual analog satiety surveys and fasting serum leptin after each 28-day period. T-tests compared mean within- and between-person satiety scores and leptin values. Participants reported 7% greater satiation on the low GL vs. the high GL diet (P = 0.03) and fewer food cravings on the low GL vs. the high GL diet (P < 0.001). Compared to males, females reported less hunger (P = 0.05) and more satiety on the low GL vs. the high GL diet (P < 0.01). Participants with low body fat (<25.0% for men; <32.0% for women) and BMI <25.0 kg/m² reported study food was tastier on the low GL vs. the high GL diet (P = 0.04 and P = 0.05, respectively). In summary, reducing GL, and/or increasing fiber, may be an effective way to lower calories consumed, improve energy balance, and ultimately reduce cancer risk.


Assuntos
Dieta Redutora/métodos , Índice Glicêmico , Obesidade/dietoterapia , Sobrepeso/dietoterapia , Saciação , Adiposidade , Adolescente , Adulto , Índice de Massa Corporal , Estudos Cross-Over , Dieta Redutora/efeitos adversos , Fibras na Dieta/uso terapêutico , Feminino , Preferências Alimentares , Humanos , Leptina/sangue , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Sobrepeso/sangue , Caracteres Sexuais , Washington , Adulto Jovem
13.
Neuron ; 110(24): 4162-4175.e7, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36257322

RESUMO

In the mammalian brain TRPC channels, a family of Ca2+-permeable cation channels, are involved in a variety of processes from neuronal growth and synapse formation to transmitter release, synaptic transmission and plasticity. The molecular appearance and operation of native TRPC channels, however, remained poorly understood. Here, we used high-resolution proteomics to show that TRPC channels in the rodent brain are macro-molecular complexes of more than 1 MDa in size that result from the co-assembly of the tetrameric channel core with an ensemble of interacting proteins (interactome). The core(s) of TRPC1-, C4-, and C5-containing channels are mostly heteromers with defined stoichiometries for each subtype, whereas TRPC3, C6, and C7 preferentially form homomers. In addition, TRPC1/C4/C5 channels may co-assemble with the metabotropic glutamate receptor mGluR1, thus guaranteeing both specificity and reliability of channel activation via the phospholipase-Ca2+ pathway. Our results unveil the subunit composition of native TRPC channels and resolve the molecular details underlying their activation.


Assuntos
Encéfalo , Canais de Cátion TRPC , Animais , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Reprodutibilidade dos Testes , Encéfalo/metabolismo , Transmissão Sináptica , Mamíferos/metabolismo
14.
J Neurosci ; 30(31): 10272-81, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20685972

RESUMO

Neuronal communication relies on rapid and discrete intercellular signaling but neither the molecular mechanisms of the exocytotic machinery that define the timing of the action potential-evoked response nor those controlling the kinetics of transmitter release from single synaptic vesicles are known. Here, we investigate how interference with the putative force transduction between the complex-forming SNARE (soluble N-ethylamide-sensitive factor attachment protein receptor) domain and the transmembrane anchor of synaptobrevin II (SybII) affects action potential-evoked currents and spontaneous, quantal transmitter release at mouse hippocampal synapses. The results indicate that SybII-generated membrane stress effectively determines the kinetics of the action potential-evoked response and show that SNARE force modulates the concentration profile of cleft glutamate by controlling the rate of transmitter release from the single synaptic vesicle. Thus, multiple SybII actions determine the exquisite temporal regulation of neuronal signaling.


Assuntos
Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Células Cultivadas , Estimulação Elétrica , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fatores de Tempo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
15.
Drug Metab Dispos ; 39(9): 1650-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21666065

RESUMO

Acetaminophen (APAP) glucuronidation is thought to occur mainly by UDP-glucuronosyltransferases (UGT) in the UGT1A family. Interindividual variation in APAP glucuronidation is attributed in part to polymorphisms in UGT1As. However, evidence suggests that UGT2B15 may also be important. We evaluated, in a controlled feeding trial, whether APAP conjugation differed by UGT1A6 and UGT2B15 genotypes and whether supplementation of known dietary inducers of UGT (crucifers, soy, and citrus) modulated APAP glucuronidation compared with a diet devoid of fruits and vegetables (F&V). Healthy adults (n = 66) received 1000 mg of APAP orally on days 7 and 14 of each 2-week feeding period and collected saliva and urine over 12 h. Urinary recovery of the percentage of the APAP dose as free APAP was higher (P = 0.02), and the percentage as APAP glucuronide (APAPG) was lower (P = 0.004) in women. The percentage of APAP was higher among UGT1A6*1/*1 genotypes, relative to *1/*2 and *2/*2 genotypes (P = 0.045). For UGT2B15, the percentage of APAPG decreased (P < 0.0001) and that of APAP sulfate increased (P = 0.002) in an allelic dose-dependent manner across genotypes from *1/*1 to *2/*2. There was a significant diet × UGT2B15 genotype interaction for the APAPG ratio (APAPG/total metabolites × 100) (P = 0.03), with *1/*1 genotypes having an approximately 2-fold higher F&V to basal diet difference in response compared with *1/*2 and *2/*2 genotypes. Salivary APAP maximum concentration (C(max)) was significantly higher in women (P = 0.0003), with F&V (P = 0.003), and among UGT1A6*2/*2 and UGT2B15*1/*2 genotypes (P = 0.02 and 0.002, respectively). APAP half-life was longer in UGT2B15*2/*2 genotypes with F&V (P = 0.009). APAP glucuronidation was significantly influenced by the UGT2B15*2 polymorphism, supporting a role in vivo for UGT2B15 in APAP glucuronidation, whereas the contribution of UGT1A6*2 was modest. Selected F&V known to affect UGT activity led to greater glucuronidation and less sulfation.


Assuntos
Acetaminofen/farmacocinética , Interações Alimento-Droga , Frutas , Glucuronosiltransferase/genética , Verduras , Acetaminofen/metabolismo , Acetaminofen/urina , Adulto , Alelos , Estudos Cross-Over , Dieta , Feminino , Genótipo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Meia-Vida , Humanos , Masculino , Polimorfismo Genético , Saliva/metabolismo
16.
Cell Calcium ; 99: 102473, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560367

RESUMO

The endoplasmic reticulum (ER) is extensively remodelled during the development of professional secretory cells to cope with high protein production. Since ER is the principal Ca2+ store in the cell, we characterised the Ca2+ homeostasis in NALM-6 and RPMI 8226 cells, which are commonly used as human pre-B and antibody secreting plasma cell models, respectively. Expression levels of Sec61 translocons and the corresponding Sec61-mediated Ca2+ leak from ER, Ca2+ storage capacity and store-operated Ca2+ entry were significantly enlarged in the secretory RPMI 8226 cell line. Using an immunoglobulin M heavy chain producing HeLa cell model, we found that the enlarged Ca2+ storage capacity and Ca2+ leak from ER are linked to ER expansion. Our data delineates a developmental remodelling of Ca2+ homeostasis in professional secretory cells in which a high Sec61-mediated Ca2+ leak and, thus, a high Ca2+ turnover in the ER is backed up by enhanced store-operated Ca2+ entry.


Assuntos
Cálcio , Retículo Endoplasmático , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Células HeLa , Homeostase , Humanos , Canais de Translocação SEC/metabolismo
17.
Cell Rep ; 34(11): 108844, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730587

RESUMO

Store-operated Ca2+-entry (SOCE) regulates basal and receptor-triggered Ca2+ signaling with STIM proteins sensing the endoplasmic reticulum (ER) Ca2+ content and triggering Ca2+ entry by gating Orai channels. Although crucial for immune cells, STIM1's role in neuronal Ca2+ homeostasis is controversial. Here, we characterize a splice variant, STIM1B, which shows exclusive neuronal expression and protein content surpassing conventional STIM1 in cerebellum and of significant abundance in other brain regions. STIM1B expression results in a truncated protein with slower kinetics of ER-plasma membrane (PM) cluster formation and ICRAC, as well as reduced inactivation. In primary wild-type neurons, STIM1B is targeted by its spliced-in domain B to presynaptic sites where it converts classic synaptic depression into Ca2+- and Orai-dependent short-term synaptic enhancement (STE) at high-frequency stimulation (HFS). In conjunction with altered STIM1 splicing in human Alzheimer disease, our findings highlight STIM1 splicing as an important regulator of neuronal calcium homeostasis and of synaptic plasticity.


Assuntos
Molécula 1 de Interação Estromal/metabolismo , Sinapses/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Éxons/genética , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteína ORAI1/metabolismo , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , Transdução de Sinais , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética
18.
Neuron ; 109(20): 3283-3297.e11, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34672983

RESUMO

Deep brain temperature detection by hypothalamic warm-sensitive neurons (WSNs) has been proposed to provide feedback information relevant for thermoregulation. WSNs increase their action potential firing rates upon warming, a property that has been presumed to rely on the composition of thermosensitive ion channels within WSNs. Here, we describe a synaptic mechanism that regulates temperature sensitivity of preoptic WSNs and body temperature. Experimentally induced warming of the mouse hypothalamic preoptic area in vivo triggers body cooling. TRPM2 ion channels facilitate this homeostatic response and, at the cellular level, enhance temperature responses of WSNs, thereby linking WSN function with thermoregulation for the first time. Rather than acting within WSNs, we-unexpectedly-find TRPM2 to temperature-dependently increase synaptic drive onto WSNs by disinhibition. Our data emphasize a network-based interoceptive paradigm that likely plays a key role in encoding body temperature and that may facilitate integration of diverse inputs into thermoregulatory pathways.


Assuntos
Regulação da Temperatura Corporal/genética , Inibição Neural/genética , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Canais de Cátion TRPM/genética , Sensação Térmica/genética , Animais , Temperatura Corporal , Regulação da Temperatura Corporal/fisiologia , Interocepção/fisiologia , Camundongos , Camundongos Knockout , Área Pré-Óptica/citologia , Sinapses , Canais de Cátion TRPM/metabolismo
19.
Nutr Cancer ; 62(2): 208-19, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20099195

RESUMO

beta-glucuronidase, an acid hydrolase that deconjugates glucuronides, may increase cancer risk; however, little is known about factors associated with human beta -glucuronidase. Our objective was to examine whether dietary and demographic factors were associated with serum beta -glucuronidase activity. We conducted a cross-sectional study among 279 healthy men and women aged 20 to 40 yr. Diet, categorized by botanical families and nutrient intakes, was assessed from 3-day food records and a validated semiquantitative food frequency questionnaire. Demographic factors were directly measured or self-reported. Adjusted mean beta -glucuronidase activity across categories of exposure variables were calculated by multiple linear regression. Higher beta -glucuronidase activity was significantly associated with being male, older age (> or = 30 yr), non-Caucasian, overweight (> or = 25 kg/m(2)), and higher intakes of gamma-tocopherol. Conversely, lower beta -glucuronidase activity was significantly associated with higher intakes of calcium, iron, and magnesium. A suggestive decrease in beta -glucuronidase activity was observed for the botanical families Cruciferae, Rutaceae, Compositae, Roseaceae, and Umbelliferae, but tests for trend were not statistically significant. In conclusion, several dietary and nondietary factors were associated with beta -glucuronidase activity; however, confirmation of these associations are needed.


Assuntos
Dieta , Glucuronidase/sangue , Adulto , Fatores Etários , Peso Corporal , Cálcio da Dieta/administração & dosagem , Estudos Transversais , Registros de Dieta , Feminino , Frutas , Humanos , Ferro da Dieta/administração & dosagem , Modelos Lineares , Magnésio/administração & dosagem , Masculino , Sobrepeso , Grupos Raciais , Fatores Sexuais , Inquéritos e Questionários , Verduras , gama-Tocoferol/administração & dosagem
20.
Nutr Cancer ; 62(3): 329-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20358470

RESUMO

Epidemiologic studies have examined the association between fruit and vegetable (F&V) consumption and the risk of cancer. Several cancer-preventive mechanisms have been proposed, such as antioxidant properties and modulation of biotransformation enzyme activities; both may be associated with reducing DNA damage and hence the mutation rate. We investigated, in a randomized, controlled, crossover feeding trial, the effect of 10 servings/day of botanically defined F&V for 2 wk on endogenous DNA damage; resistance to gamma -irradiation damage; and DNA repair capacity in lymphocytes, measured by the Comet assay. We also explored the association between the UGT1A1*28 polymorphism and serum bilirubin concentrations and DNA damage and repair measures. Healthy men (n = 11) and women (n = 17), age 20 to 40 yr, provided blood samples at the end of each feeding period. Overall, F&V did not affect DNA damage and repair measures in lymphocytes. The number of UGT1A1*28 alleles was inversely associated with sensitivity to gamma -irradiation exposure and DNA repair capacity, but a biological mechanism to explain this association is unclear. A larger sample size is needed to investigate the association between bilirubin concentrations and endogenous DNA damage. With inconsistent findings in the literature, additional dietary intervention studies on the effect of F&V on DNA damage and repair are needed.


Assuntos
Dano ao DNA , Reparo do DNA , Frutas , Verduras , Adulto , Bilirrubina/sangue , Estudos Cross-Over , Feminino , Glucuronosiltransferase/genética , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA