RESUMO
The liver is the largest solid organ in the body, yet it remains incompletely characterized. Here we present a spatial proteogenomic atlas of the healthy and obese human and murine liver combining single-cell CITE-seq, single-nuclei sequencing, spatial transcriptomics, and spatial proteomics. By integrating these multi-omic datasets, we provide validated strategies to reliably discriminate and localize all hepatic cells, including a population of lipid-associated macrophages (LAMs) at the bile ducts. We then align this atlas across seven species, revealing the conserved program of bona fide Kupffer cells and LAMs. We also uncover the respective spatially resolved cellular niches of these macrophages and the microenvironmental circuits driving their unique transcriptomic identities. We demonstrate that LAMs are induced by local lipid exposure, leading to their induction in steatotic regions of the murine and human liver, while Kupffer cell development crucially depends on their cross-talk with hepatic stellate cells via the evolutionarily conserved ALK1-BMP9/10 axis.
Assuntos
Evolução Biológica , Hepatócitos/metabolismo , Macrófagos/metabolismo , Proteogenômica , Animais , Núcleo Celular/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Homeostase , Humanos , Células de Kupffer/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Lipídeos/química , Fígado/metabolismo , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Mieloides/metabolismo , Obesidade/patologia , Proteoma/metabolismo , Transdução de Sinais , Transcriptoma/genéticaRESUMO
Using single-cell RNA sequencing of both immune and non-immune cells in the developing lung, Cohen et al. map candidate cell-cell interactions during alveolar macrophage development. This revealed potential cross-talk between epithelial cells, ILC2s, basophils, and the developing macrophages, which were validated both in vitro and in vivo.
Assuntos
Basófilos , Macrófagos Alveolares , Comunicação Celular , Imunidade Inata , Pulmão , Linfócitos , MacrófagosRESUMO
Single-cell and spatial transcriptomic technologies have revealed an underappreciated heterogeneity of liver macrophages. This has led us to rethink the involvement of macrophages in liver homeostasis and disease. Identification of conserved gene signatures within these cells across species and diseases is enabling the correct identification of specific macrophage subsets and the generation of more specific tools to track and study the functions of these cells. Here, we discuss what is currently known about the definitions of these different macrophage populations, the markers that can be used to identify them, how they are wired within the liver, and their functional specializations in health and disease.
Assuntos
Células de Kupffer , Fígado , Homeostase , Macrófagos/fisiologia , TranscriptomaRESUMO
To maintain cardiac output, the failing heart undergoes significant remodeling. However, the mechanisms regulating this remain unclear. In this issue of Immunity, Zaman et al. and Wong, Mohan, and Kopecky et al. uncover an interaction between resident cardiac macrophages and cardiomyocytes governing this process.
Assuntos
Macrófagos , Miócitos Cardíacos , ComunicaçãoRESUMO
Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD.
Assuntos
Células da Medula Óssea/citologia , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Osteopontina/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Desmina/metabolismo , Feminino , Células de Kupffer/citologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Transcriptoma/genéticaRESUMO
The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.
Assuntos
Plasticidade Celular/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunidade , Macrófagos/imunologia , Macrófagos/metabolismo , Infecções por Respirovirus/etiologia , Apresentação de Antígeno , Biomarcadores , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Imunofenotipagem , Interferon Tipo I/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Especificidade de Órgãos/imunologia , Receptores Fc/metabolismo , Infecções por Respirovirus/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Transcrição , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/virologiaRESUMO
Macrophages are strongly adapted to their tissue of residence. Yet, little is known about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity. Kupffer cell loss induced tumor necrosis factor (TNF)- and interleukin-1 (IL-1) receptor-dependent activation of stellate cells and endothelial cells, resulting in the transient production of chemokines and adhesion molecules orchestrating monocyte engraftment. Engrafted circulating monocytes transmigrated into the perisinusoidal space and acquired the liver-associated transcription factors inhibitor of DNA 3 (ID3) and liver X receptor-α (LXR-α). Coordinated interactions with hepatocytes induced ID3 expression, whereas endothelial cells and stellate cells induced LXR-α via a synergistic NOTCH-BMP pathway. This study shows that the Kupffer cell niche is composed of stellate cells, hepatocytes, and endothelial cells that together imprint the liver-specific macrophage identity.
Assuntos
Células Endoteliais/fisiologia , Células Estreladas do Fígado/fisiologia , Hepatócitos/fisiologia , Células de Kupffer/fisiologia , Fígado/citologia , Macrófagos/fisiologia , Monócitos/fisiologia , Animais , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Microambiente Celular , Feminino , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Notch/metabolismoRESUMO
Miyamoto et al. report that Marco expression demarcates a population of IL-10-expressing immunosuppressive Kupffer cells (KCs) that are preferentially peri-portally located in the mouse liver, and which limit bacterial dissemination and liver inflammation.
Assuntos
Interleucina-10 , Células de Kupffer , Fígado , Animais , Células de Kupffer/imunologia , Camundongos , Fígado/imunologia , Fígado/patologia , Interleucina-10/metabolismo , Interleucina-10/imunologia , Humanos , Macrófagos/imunologia , Inflamação/imunologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologiaRESUMO
Heterogeneity between different macrophage populations has become a defining feature of this lineage. However, the conserved factors defining macrophages remain largely unknown. The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal transition; however, its role within the immune system is only now being elucidated. We show here that Zeb2 expression is a conserved feature of macrophages. Using Clec4f-cre, Itgax-cre, and Fcgr1-cre mice to target five different macrophage populations, we found that loss of ZEB2 resulted in macrophage disappearance from the tissues, coupled with their subsequent replenishment from bone-marrow precursors in open niches. Mechanistically, we found that ZEB2 functioned to maintain the tissue-specific identities of macrophages. In Kupffer cells, ZEB2 achieved this by regulating expression of the transcription factor LXRα, removal of which recapitulated the loss of Kupffer cell identity and disappearance. Thus, ZEB2 expression is required in macrophages to preserve their tissue-specific identities.
Assuntos
Células de Kupffer/citologia , Receptores X do Fígado/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Animais , Linhagem da Célula/imunologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Células de Kupffer/imunologia , Fígado/citologia , Receptores X do Fígado/metabolismo , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos TransgênicosRESUMO
The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2-dependent influx of Ly6C(hi) monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.
Assuntos
Mucosa Intestinal/imunologia , Intestinos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Transplante de Medula Óssea , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Receptor 1 de Quimiocina CX3C , Diferenciação Celular/imunologia , Proliferação de Células , Citometria de Fluxo , Expressão Gênica/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Imunológicos , Monócitos/metabolismo , Parabiose , Receptores CCR2/genética , Receptores CCR2/imunologia , Receptores CCR2/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de TempoRESUMO
BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which pharmacological treatment options are currently unavailable. PSC is strongly associated with colitis and a disruption of the gut-liver axis, and macrophages are involved in the pathogenesis of PSC. However, how gut-liver interactions and specific macrophage populations contribute to PSC is incompletely understood. APPROACH AND RESULTS: We investigated the impact of cholestasis and colitis on the hepatic and colonic microenvironment, and performed an in-depth characterization of hepatic macrophage dynamics and function in models of concomitant cholangitis and colitis. Cholestasis-induced fibrosis was characterized by depletion of resident KCs, and enrichment of monocytes and monocyte-derived macrophages (MoMFs) in the liver. These MoMFs highly express triggering-receptor-expressed-on-myeloid-cells-2 ( Trem2 ) and osteopontin ( Spp1 ), markers assigned to hepatic bile duct-associated macrophages, and were enriched around the portal triad, which was confirmed in human PSC. Colitis induced monocyte/macrophage infiltration in the gut and liver, and enhanced cholestasis-induced MoMF- Trem2 and Spp1 upregulation, yet did not exacerbate liver fibrosis. Bone marrow chimeras showed that knockout of Spp1 in infiltrated MoMFs exacerbates inflammation in vivo and in vitro , while monoclonal antibody-mediated neutralization of SPP1 conferred protection in experimental PSC. In human PSC patients, serum osteopontin levels are elevated compared to control, and significantly increased in advanced stage PSC and might serve as a prognostic biomarker for liver transplant-free survival. CONCLUSIONS: Our data shed light on gut-liver axis perturbations and macrophage dynamics and function in PSC and highlight SPP1/OPN as a prognostic marker and future therapeutic target in PSC.
Assuntos
Colangite Esclerosante , Colestase , Colite , Humanos , Colangite Esclerosante/patologia , Osteopontina , Cirrose Hepática/patologia , Ductos Biliares/patologia , Colestase/patologia , Macrófagos/patologiaRESUMO
Interferon regulatory factor 8 (IRF8) has long been associated with conventional dendritic cell type I (cDC1) development. In a recent study, Lança et al. demonstrate that IRF8 is also crucial in cells already committed to the cDC1 lineage. Here, deletion of IRF8 from the XCR1-expressing pre-cDC1 stage onward leads to a loss of commitment and reprogramming of the cells toward a cDC2-like phenotype.
Assuntos
Células Dendríticas , Fatores Reguladores de Interferon , Animais , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Tissue-resident macrophages can derive from yolk sac macrophages (YS-Macs), fetal liver monocytes (FL-MOs), or adult bone-marrow monocytes (BM-MOs). The relative capacity of these precursors to colonize a niche, self-maintain, and perform tissue-specific functions is unknown. We simultaneously transferred traceable YS-Macs, FL-MOs, and BM-MOs into the empty alveolar macrophage (AM) niche of neonatal Csf2rb(-/-) mice. All subsets produced AMs, but in competition preferential outgrowth of FL-MOs was observed, correlating with their superior granulocyte macrophage-colony stimulating factor (GM-CSF) reactivity and proliferation capacity. When transferred separately, however, all precursors efficiently colonized the alveolar niche and generated AMs that were transcriptionally almost identical, self-maintained, and durably prevented alveolar proteinosis. Mature liver, peritoneal, or colon macrophages could not efficiently colonize the empty AM niche, whereas mature AMs could. Thus, precursor origin does not affect the development of functional self-maintaining tissue-resident macrophages and the plasticity of the mononuclear phagocyte system is largest at the precursor stage.
Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fígado/citologia , Macrófagos Alveolares/citologia , Saco Vitelino/citologia , Animais , Proliferação de Células , Subunidade beta Comum dos Receptores de Citocinas/genética , Fígado/embriologia , Fígado/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma/imunologia , Saco Vitelino/imunologiaRESUMO
Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the identity of terminally differentiated cells are designated "terminal selectors." Using BM chimeras, conditional Irf8(fl/fl) mice and various promotors to target Cre recombinase to different stages of monocyte and DC development, we have identified IRF8 as a terminal selector of the cDC1 lineage controlling survival. In monocytes, IRF8 was necessary during early but not late development. Complete or late deletion of IRF8 had no effect on pDC development or survival but altered their phenotype and gene-expression profile leading to increased T cell stimulatory function but decreased type 1 interferon production. Thus, IRF8 differentially controls the survival and function of terminally differentiated monocytes, cDC1s, and pDCs.
Assuntos
Diferenciação Celular/fisiologia , Células Dendríticas/metabolismo , Células Dendríticas/fisiologia , Fatores Reguladores de Interferon/metabolismo , Fatores de Transcrição/metabolismo , Animais , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/fisiologia , Regiões Promotoras Genéticas/fisiologia , Linfócitos T/metabolismo , Linfócitos T/fisiologiaRESUMO
Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.
Assuntos
Células Dendríticas/fisiologia , Animais , Diferenciação Celular/fisiologia , Citometria de Fluxo , Humanos , Inflamação/patologia , Macaca , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Our ability to understand the cellular complexity of tissues has been revolutionized in recent years with significant advances in proteogenomic technologies including those enabling spatial analyses. This has led to numerous consortium efforts, such as the human cell atlas initiative which aims to profile all cells in the human body in healthy and diseased contexts. The availability of such information will subsequently lead to the identification of novel biomarkers of disease and of course therapeutic avenues. However, before such an atlas of any given healthy or diseased tissue can be generated, several factors should be considered including which specific techniques are optimal for the biological question at hand. In this review, we aim to highlight some of the considerations we believe to be important in the experimental design and analysis process, with the goal of helping to navigate the rapidly changing landscape of technologies available.
Assuntos
Proteogenômica , Humanos , Proteogenômica/métodos , Biomarcadores , Proteômica/métodosRESUMO
Primary sclerosing cholangitis (PSC) is an idiopathic chronic immune-mediated cholestatic liver disease characterized by fibro-inflammatory bile duct strictures, progressive hepatobiliary fibrosis, and gut-liver axis disruption. The pathophysiology of PSC remains insufficiently characterized, which hampers the development of effective therapies. Hepatic macrophages (MFs) such as Kupffer cells (KCs) are implicated in PSC pathogenesis, but their exact role is unclear. Using the latest markers to discriminate resident KCs (ResKCs) from their monocyte-derived counterparts (MoKCs), and two models of intrahepatic and extrahepatic cholestasis, respectively, this study showed that CLEC4F+TIM4+ ResKCs were depleted after chronic cholestatic liver injury. The infiltrating CLEC4F+TIM4- MoKCs were already enriched during the acute phase of PSC. Transcriptional profiling of hepatic MF subsets during early cholestatic injury indicated that ResKCs were indeed activated and that MoKCs expressed higher levels of pro-inflammatory and proliferative markers compared with those of ResKCs. As indicated in experiments with Clec4fDTR transgenic mice, conditional depletion of KCs, before and during early cholestasis induction, had no effect on the composition of the hepatic myeloid cell pool following injury progression and did not affect disease outcomes. Taken together, these results provide new insights into the heterogeneity of the MF pool during experimental PSC and evidence that depletion of resident and activated KCs during sclerosing cholangitis does not affect disease outcome in mice.
Assuntos
Colangite Esclerosante , Colestase , Camundongos , Animais , Colangite Esclerosante/patologia , Células de Kupffer/patologia , Fígado/patologia , Colestase/patologiaRESUMO
BACKGROUND: IL-33 plays a major role in the pathogenesis of allergic diseases such as asthma and atopic dermatitis. On its release from lung epithelial cells, IL-33 primarily drives type 2 immune responses, accompanied by eosinophilia and robust production of IL-4, IL-5, and IL-13. However, several studies show that IL-33 can also drive a type 1 immune response. OBJECTIVE: We sought to determine the role of A20 in the regulation of IL-33 signaling in macrophages and IL-33-induced lung immunity. METHODS: We studied the immunologic response in lungs of IL-33-treated mice that specifically lack A20 in myeloid cells. We also analyzed IL-33 signaling in A20-deficient bone marrow-derived macrophages. RESULTS: IL-33-induced lung innate lymphoid cell type 2 expansion, type 2 cytokine production, and eosinophilia were drastically reduced in the absence of macrophage A20 expression, whereas neutrophils and interstitial macrophages in lungs were increased. In vitro, IL-33-mediated nuclear factor kappa B activation was only weakly affected in A20-deficient macrophages. However, in the absence of A20, IL-33 gained the ability to activate signal transducer and activator of transcription 1 (STAT1) signaling and STAT1-dependent gene expression. Surprisingly, A20-deficient macrophages produced IFN-γ in response to IL-33, which was fully STAT1-dependent. Furthermore, STAT1 deficiency partially restored the ability of IL-33 to induce ILC2 expansion and eosinophilia in myeloid cell-specific A20 knockout mice. CONCLUSIONS: We reveal a novel role for A20 as a negative regulator of IL-33-induced STAT1 signaling and IFN-γ production in macrophages, which determines lung immune responses.
Assuntos
Imunidade Inata , Interleucina-33 , Pulmão , Animais , Camundongos , Eosinofilia , Pulmão/imunologia , Linfócitos , Macrófagos , Camundongos KnockoutRESUMO
Due to a combination of rapid disease progression and the lack of curative treatment options, hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Infiltrated, monocyte-derived, tumor-associated macrophages are known to play a role in HCC pathogenesis, but the involvement of Kupffer cells (KCs) remains elusive. Here, we used the Clec4F-diphteria toxin receptor transgenic mouse model to specifically investigate the effect of KC depletion on HCC initiation, progression and neoplastic growth following liver resection. For this purpose, several HCC mouse models with varying underlying etiologies were used and partial hepatectomy was performed. Our results show that in HCC, developed on a fibrotic or non-alcoholic steatohepatitis background, depletion of embryonic KCs at the onset of HCC induction and the subsequent replacement by monocyte-derived KCs does not affect the tumor burden, tumor microenvironment or the phenotype of isolated KCs at end-stage disease. In non-chronic liver disease-associated diethylnitrosamine-induced HCC, ablation of Clec4F+ KCs did not alter tumor progression or neoplastic growth following liver resection. Our results show that temporal ablation of resident KCs does not impact HCC pathogenesis, neither in the induction phase nor in advanced disease, and indicate that bone marrow-derived KCs are able to swiftly repopulate the available KC niche and adopt their phenotype.