Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(5): 100767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615877

RESUMO

DNA replication is a fundamental cellular process that ensures the transfer of genetic information during cell division. Genome duplication takes place in S phase and requires a dynamic and highly coordinated recruitment of multiple proteins at replication forks. Various genotoxic stressors lead to fork instability and collapse, hence the need for DNA repair pathways. By identifying the multitude of protein interactions implicated in those events, we can better grasp the complex and dynamic molecular mechanisms that facilitate DNA replication and repair. Proximity-dependent biotin identification was used to identify associations with 17 proteins within four core replication components, namely the CDC45/MCM2-7/GINS helicase that unwinds DNA, the DNA polymerases, replication protein A subunits, and histone chaperones needed to disassemble and reassemble chromatin. We further investigated the impact of genotoxic stress on these interactions. This analysis revealed a vast proximity association network with 108 nuclear proteins further modulated in the presence of hydroxyurea; 45 being enriched and 63 depleted. Interestingly, hydroxyurea treatment also caused a redistribution of associations with 11 interactors, meaning that the replisome is dynamically reorganized when stressed. The analysis identified several poorly characterized proteins, thereby uncovering new putative players in the cellular response to DNA replication arrest. It also provides a new comprehensive proteomic framework to understand how cells respond to obstacles during DNA replication.


Assuntos
Replicação do DNA , Hidroxiureia , Proteômica , Hidroxiureia/farmacologia , Proteômica/métodos , Humanos , Dano ao DNA , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteoma/metabolismo
2.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38626213

RESUMO

Small nucleolar RNAs (snoRNAs) are a class of conserved noncoding RNAs forming complexes with proteins to catalyse site-specific modifications on ribosomal RNA. Besides this canonical role, several snoRNAs are now known to regulate diverse levels of gene expression. While these functions are carried out in trans by mature snoRNAs, evidence has also been emerging of regulatory roles of snoRNAs in cis, either within their genomic locus or as longer transcription intermediates during their maturation. Herein, we review recent findings that snoRNAs can interact in cis with their intron to regulate the expression of their host gene. We also explore the ever-growing diversity of longer host-derived snoRNA extensions and their functional impact across the transcriptome. Finally, we discuss the role of snoRNA duplications into forging these new layers of snoRNA-mediated regulation, as well as their involvement in the genomic imprinting of their host locus.


Assuntos
RNA Nucleolar Pequeno , RNA não Traduzido , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , RNA não Traduzido/genética , RNA Ribossômico/genética , Íntrons
3.
Biomedicines ; 12(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927492

RESUMO

Maternal blood glucose regulation adaptation to pregnancy aims to support fetal growth but may also lead to the development of gestational diabetes mellitus, the most common pregnancy complication. MiRNAs are small RNA molecules secreted and stable in the blood, where they could have paracrine hormone-like functions (ribo-hormone) and regulate metabolic processes including fetal growth and glucose metabolism. The objective of this study was to identify plasmatic microRNA (miRNAs) measured during the first trimester of pregnancy that were associated with glucose levels during a 75 g oral glucose tolerance test (OGTT) at ~26 weeks of pregnancy. miRNAs were quantified using next-generation sequencing in 444 pregnant women and replicated in an independent cohort of 106 pregnant women. MiRNAs associated with glucose levels were identified with the DESeq2 package. We identified 24 miRNAs associated with fasting glycemia, of which 18 were common to both cohorts (q-value < 0.1). However, no association was found between miRNAs and 1 h or 2 h post OGTT glycemia. To conclude, we identified 18 miRNAs early in pregnancy that were associated with fasting blood glucose measured 3 months later. Our findings offer new insights into the mechanisms involved in fasting glucose homeostasis regulation in pregnancy, which is critical to understanding how gestational diabetes develops.

4.
Sci Transl Med ; 16(739): eabn8529, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507466

RESUMO

Impaired skeletal muscle stem cell (MuSC) function has long been suspected to contribute to the pathogenesis of muscular dystrophy (MD). Here, we showed that defects in the endothelial cell (EC) compartment of the vascular stem cell niche in mouse models of Duchenne MD, laminin α2-related MD, and collagen VI-related myopathy were associated with inefficient mobilization of MuSCs after tissue damage. Using chemoinformatic analysis, we identified the 13-amino acid form of the peptide hormone apelin (AP-13) as a candidate for systemic stimulation of skeletal muscle ECs. Systemic administration of AP-13 using osmotic pumps generated a pro-proliferative EC-rich niche that supported MuSC function through angiocrine factors and markedly improved tissue regeneration and muscle strength in all three dystrophic mouse models. Moreover, EC-specific knockout of the apelin receptor led to regenerative defects that phenocopied key pathological features of MD, including vascular defects, fibrosis, muscle fiber necrosis, impaired MuSC function, and reduced force generation. Together, these studies provide in vivo proof of concept that enhancing endogenous skeletal muscle repair by targeting the vascular niche is a viable therapeutic avenue for MD and characterized AP-13 as a candidate for further study for the systemic treatment of MuSC dysfunction.


Assuntos
Distrofia Muscular de Duchenne , Nicho de Células-Tronco , Camundongos , Animais , Apelina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA