Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 30(29): 9898-909, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20660272

RESUMO

The kinetics of GABAergic synaptic currents can vary by an order of magnitude depending on the cell type. The neurogliaform cell (NGFC) has recently been identified as a key generator of slow GABA(A) receptor-mediated volume transmission in the isocortex. However, the mechanisms underlying slow GABA(A) receptor-mediated IPSCs and their use-dependent plasticity remain unknown. Here, we provide experimental and modeling data showing that hippocampal NGFCs generate an unusually prolonged (tens of milliseconds) but low-concentration (micromolar range) GABA transient, which is responsible for the slow response kinetics and which leads to a robust desensitization of postsynaptic GABA(A) receptors. This strongly contributes to the use-dependent synaptic depression elicited by various patterns of NGFC activity including the one detected during theta network oscillations in vivo. Synaptic depression mediated by NGFCs is likely to play an important modulatory role in the feedforward inhibition of CA1 pyramidal cells provided by the entorhinal cortex.


Assuntos
Região CA1 Hipocampal/metabolismo , Inibição Neural/fisiologia , Neuroglia/metabolismo , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/citologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Técnicas In Vitro , Masculino , Modelos Neurológicos , Neuroglia/citologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Potenciais Sinápticos
2.
Pflugers Arch ; 462(4): 545-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21755285

RESUMO

BK channels modulate cell firing in excitable cells in a voltage-dependent manner regulated by fluctuations in free cytosolic Ca(2+) during action potentials. Indeed, Ca(2+)-independent BK channel activity has ordinarily been considered not relevant for the physiological behaviour of excitable cells. We employed the patch-clamp technique and selective BK channel blockers to record K(+) currents from bovine chromaffin cells at minimal intracellular (about 10 nM) and extracellular (free Ca(2+)) Ca(2+) concentrations. Despite their low open probability under these conditions (V(50) of +146.8 mV), BK channels were responsible for more than 25% of the total K(+) efflux during the first millisecond of a step depolarisation to +20 mV. Moreover, BK channels activated about 30% faster (τ = 0.55 ms) than the rest of available K(+) channels. The other main source of fast voltage-dependent K(+) efflux at such a low Ca(2+) was a transient K(+) (I(A)-type) current activating with V (50) = -14.2 mV. We also studied the activation of BK currents in response to action potential waveforms and their contribution to shaping action potentials both in the presence and the absence of extracellular Ca(2+). Our results show that BK channels activate during action potentials and accelerate cell repolarisation even at minimal Ca(2+) concentration, and suggest that they could do so also in the presence of extracellular Ca(2+), before Ca(2+) entering the cell facilitates their activity.


Assuntos
Potenciais de Ação/fisiologia , Células Cromafins/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Bovinos , Células Cultivadas , Indóis/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia
3.
Nat Commun ; 5: 3817, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24851940

RESUMO

Action potential (AP) generation is the key to information-processing in the brain. Although APs are normally initiated in the axonal initial segment, developmental adaptation or prolonged network activity may alter the initiation site geometry thus affecting cell excitability. Here we find that hippocampal dentate granule cells adapt their spiking threshold to the kinetics of the ongoing dendrosomatic excitatory input by expanding the AP-initiation area away from the soma while also decelerating local axonal spikes. Dual-patch soma-axon recordings combined with axonal Na(+) and Ca(2+) imaging and biophysical modelling show that the underlying mechanism involves distance-dependent inactivation of axonal Na(+) channels due to somatic depolarization propagating into the axon. Thus, the ensuing changes in the AP-initiation zone and local AP propagation could provide activity-dependent control of cell excitability and spiking on a relatively rapid timescale.


Assuntos
Potenciais de Ação/fisiologia , Adaptação Fisiológica , Neurônios/fisiologia , Animais , Axônios/fisiologia , Fenômenos Biofísicos , Dendritos/fisiologia , Giro Denteado/citologia , Fluorescência , Ativação do Canal Iônico , Masculino , Modelos Neurológicos , Ratos Sprague-Dawley , Canais de Sódio/metabolismo , Sinapses/fisiologia
4.
Nat Neurosci ; 13(4): 431-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20305647

RESUMO

Presynaptic GABA(A) receptors (GABA(A)Rs) occur at hippocampal mossy fiber synapses. Whether and how they modulate orthodromic signaling to postsynaptic targets is poorly understood. We found that an endogenous neurosteroid that is selective for high-affinity delta subunit-containing GABA(A)Rs depolarized rat mossy fiber boutons, enhanced action potential-dependent Ca(2+) transients and facilitated glutamatergic transmission to pyramidal neurons. Conversely, blocking GABA(A)Rs hyperpolarized mossy fiber boutons, increased their input resistance, decreased spike width and attenuated action potential-dependent presynaptic Ca(2+) transients, indicating that a subset of presynaptic GABA receptors are tonically active. Blocking GABA(A)Rs also interfered with the induction of long-term potentiation at mossy fiber-CA3 synapses. Presynaptic GABA(A)Rs therefore facilitate information flow to the hippocampus both directly and by enhancing LTP.


Assuntos
Potenciação de Longa Duração/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Receptores de GABA-A/fisiologia , Receptores Pré-Sinápticos/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA