Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(15): e202114986, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104376

RESUMO

Herein, we expand the current molecular-level understanding of one of the most important and effective additives in iron-catalyzed cross-coupling reactions, N,N,N',N'-tetramethylethylenediamine (TMEDA). Focusing on relevant phenyl and ethyl Grignard reagents and slow nucleophile addition protocols commonly used in effective catalytic systems, TMEDA-iron(II)-aryl intermediates are identified via in situ spectroscopy, X-ray crystallography, and detailed reaction studies to be a part of an iron(II)/(III)/(I) reaction cycle where radical recombination with FePhBr(TMEDA) (2Ph ) results in selective product formation in high yield. These results differ from prior studies with mesityl Grignard reagent, where poor product selectivity and low catalytic performance can be attributed to homoleptic iron-ate species. Overall, this study represents a critical advance in how amine additives such as TMEDA can modulate selectivity and reactivity of organoiron species in cross-coupling.

2.
Acc Chem Res ; 52(1): 140-150, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30592421

RESUMO

Since the pioneering work of Kochi in the 1970s, iron has attracted great interest for cross-coupling catalysis due to its low cost and toxicity as well as its potential for novel reactivity compared to analogous reactions with precious metals like palladium. Today there are numerous iron-based cross-coupling methodologies available, including challenging alkyl-alkyl and enantioselective methods. Furthermore, cross-couplings with simple ferric salts and additives like NMP and TMEDA ( N-methylpyrrolidone and tetramethylethylenediamine) continue to attract interest in pharmaceutical applications. Despite the tremendous advances in iron cross-coupling methodologies, in situ formed and reactive iron species and the underlying mechanisms of catalysis remain poorly understood in many cases, inhibiting mechanism-driven methodology development in this field. This lack of mechanism-driven development has been due, in part, to the challenges of applying traditional characterization methods such as nuclear magnetic resonance (NMR) spectroscopy to iron chemistry due to the multitude of paramagnetic species that can form in situ. The application of a broad array of inorganic spectroscopic methods (e.g., electron paramagnetic resonance, 57Fe Mössbauer, and magnetic circular dichroism) removes this barrier and has revolutionized our ability to evaluate iron speciation. In conjunction with inorganic syntheses of unstable organoiron intermediates and combined inorganic spectroscopy/gas chromatography studies to evaluate in situ iron reactivity, this approach has dramatically evolved our understanding of in situ iron speciation, reactivity, and mechanisms in iron-catalyzed cross-coupling over the past 5 years. This Account focuses on the key advances made in obtaining mechanistic insight in iron-catalyzed carbon-carbon cross-couplings using simple ferric salts, iron-bisphosphines, and iron- N-heterocyclic carbenes (NHCs). Our studies of ferric salt catalysis have resulted in the isolation of an unprecedented iron-methyl cluster, allowing us to identify a novel reaction pathway and solve a decades-old mystery in iron chemistry. NMP has also been identified as a key to accessing more stable intermediates in reactions containing nucleophiles with and without ß-hydrogens. In iron-bisphosphine chemistry, we have identified several series of transmetalated iron(II)-bisphosphine complexes containing mesityl, phenyl, and alkynyl nucleophile-derived ligands, where mesityl systems were found to be unreliable analogues to phenyls. Finally, in iron-NHC cross-coupling, unique chelation effects were observed in cases where nucleophile-derived ligands contained coordinating functional groups. As with the bisphosphine case, high-spin iron(II) complexes were shown to be reactive and selective in cross-coupling. Overall, these studies have demonstrated key aspects of iron cross-coupling and the utility of detailed speciation and mechanistic studies for the rational improvement and development of iron cross-coupling methods.

3.
Angew Chem Int Ed Engl ; 59(32): 13586-13590, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32392392

RESUMO

Homoleptic σ-bonded uranium-alkyl complexes have been a synthetic target since the Manhattan Project. The current study describes the synthesis and characterization of several unprecedented uranium-methyl complexes. Amongst these complexes, the first example of a homoleptic uranium-alkyl dimer, [Li(THF)4 ]2 [U2 (CH3 )10 ], as well as a seven-coordinate uranium-methyl monomer, {Li(OEt2 )Li(OEt2 )2 UMe7 Li}n were both crystallographically identified. The diversity of complexes reported herein provides critical insight into the structural diversity, electronic structure and bonding in uranium-alkyl chemistry.

4.
Polyhedron ; 158: 91-96, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31031511

RESUMO

Homoleptic iron-alkyl complexes have been implicated as key intermediates in iron-catalyzed cross-coupling with simple iron salts. Tetraalkyliron(III) ferrate species have been shown to be accessible with either methyl or benzyl ligands, where the former complex is S = 3/2 and distorted square planar while the latter is a S = 5/2 distorted tetrahedral species. In the current study, a new tetraalkyliron(III) complex is synthesized containing modified methylene substituents that incorporate large trimethylsilyl (TMS) groups to further probe steric and electronic ligand effects in tetraalkyliron(III) complexes by increasing the electron-donating ability of the ligand while retaining steric bulk. Detailed structural and DFT studies provide insight into electronic structure and bonding of the four-coordinate trimethylsilylmethyl iron(III) complex compared to the previously reported analogs containing methyl and benzyl ligands.

5.
Angew Chem Int Ed Engl ; 58(9): 2769-2773, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30653812

RESUMO

The effects of ß-hydrogen-containing alkyl Grignard reagents in simple ferric salt cross-couplings have been elucidated. The reaction of FeCl3 with EtMgBr in THF leads to the formation of the cluster species [Fe8 Et12 ]2- , a rare example of a structurally characterized metal complex with bridging ethyl ligands. Analogous reactions in the presence of NMP, a key additive for effective cross-coupling with simple ferric salts and ß-hydrogen-containing alkyl nucleophiles, result in the formation of [FeEt3 ]- . Reactivity studies demonstrate the effectiveness of [FeEt3 ]- in rapidly and selectively forming the cross-coupled product upon reaction with electrophiles. The identification of iron-ate species with EtMgBr analogous to those previously observed with MeMgBr is a critical insight, indicating that analogous iron species can be operative in catalysis for these two classes of alkyl nucleophiles.


Assuntos
Compostos Férricos/química , Hidrogênio/química , Compostos Organometálicos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Sais/química
6.
J Am Chem Soc ; 140(38): 11872-11883, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30226380

RESUMO

Iron-catalyzed cross-coupling reactions have attracted significant research interest, as they offer numerous favorable features compared with cross-coupling reactions with precious metal catalysis. While this research has contributed to an empirical understanding of iron-catalyzed cross-coupling, the underlying fundamental mechanisms of reaction and structures of catalytically active species have remained poorly defined. The lack of such detail can be attributed to the difficulties associated with studying such iron-catalyzed reactions, where unstable paramagnetic intermediates abound. Recently, the combined application of physical-inorganic spectroscopic methods, concomitant organic product analysis, and air- and temperature-sensitive inorganic synthesis has yielded the most detailed insight currently available on reactivity and mechanism in iron-catalyzed cross-coupling. This Perspective highlights this approach and the limitations of the contributing techniques as well as some of the key features of the catalytic reactions studied and lessons learned.


Assuntos
Compostos de Ferro/química , Ferro/química , Catálise , Técnicas de Química Sintética/métodos , Ligantes , Modelos Químicos , Estrutura Molecular , Compostos Orgânicos/síntese química
7.
Angew Chem Int Ed Engl ; 57(22): 6496-6500, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29624838

RESUMO

The use of N-methylpyrrolidone (NMP) as a co-solvent in ferric salt catalyzed cross-coupling reactions is crucial for achieving the highly selective, preparative scale formation of cross-coupled product in reactions utilizing alkyl Grignard reagents. Despite the critical importance of NMP, the molecular level effect of NMP on in situ formed and reactive iron species that enables effective catalysis remains undefined. Herein, we report the isolation and characterization of a novel trimethyliron(II) ferrate species, [Mg(NMP)6 ][FeMe3 ]2 (1), which forms as the major iron species in situ in reactions of Fe(acac)3 and MeMgBr under catalytically relevant conditions where NMP is employed as a co-solvent. Importantly, combined GC analysis and 57 Fe Mössbauer spectroscopic studies identified 1 as a highly reactive iron species for the selective formation generating cross-coupled product. These studies demonstrate that NMP does not directly interact with iron as a ligand in catalysis but, alternatively, interacts with the magnesium cations to preferentially stabilize the formation of 1 over [Fe8 Me12 ]- cluster generation, which occurs in the absence of NMP.


Assuntos
Brometos/química , Compostos Férricos/síntese química , Ferro/química , Compostos de Magnésio/química , Compostos Organometálicos/síntese química , Pirrolidinonas/química , Catálise , Compostos Férricos/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Sais/síntese química , Sais/química
8.
J Am Chem Soc ; 138(35): 11360-7, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27529196

RESUMO

We herein report a new catalytic method for intermolecular olefin aminofluorination using earth-abundant iron catalysts and nucleophilic fluoride ion. This method tolerates a broad range of unfunctionalized olefins, especially nonstyrenyl olefins that are incompatible with existing olefin aminofluorination methods. This new iron-catalyzed process directly converts readily available olefins to internal vicinal fluoro carbamates with high regioselectivity (N vs F), many of which are difficult to prepare using known methods. Preliminary mechanistic studies demonstrate that it is possible to exert asymmetric induction using chiral iron catalysts and that both an iron-nitrenoid and carbocation species may be reactive intermediates.


Assuntos
Alcenos/química , Fluoretos/química , Halogenação , Ferro/química , Catálise , Estereoisomerismo
9.
Science ; 375(6587): 1393-1397, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35324298

RESUMO

The diagonal relationship in the periodic table between phosphorus and carbon has set an expectation that the triple-bonded diatomic diphosphorus molecule (P2) should more closely mimic the attributes of acetylene (HC≡CH) rather than its group 15 congener dinitrogen (N2). Although acetylene has well-documented coordination chemistry with mononuclear transition metals, coordination complexes that feature P2 bound to a single metal center have remained elusive. We report the isolation and x-ray crystallographic characterization of a mononuclear iron complex featuring P2 coordination in a side-on, η2-binding mode. An analogous η2-bound bis-timethylsilylacetylene iron complex is reported for comparison. Nuclear magnetic resonance, infrared, and Mössbauer spectroscopic analysis-in conjunction with density functional theory calculations-demonstrate that η2-P2 and η2-acetylene ligands exert a similar electronic demand on mononuclear iron centers but exhibit different reactivity profiles.

10.
Science ; 363(6432): 1203-1205, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872521

RESUMO

Boron monofluoride (BF) is a diatomic molecule with 10 valence electrons, isoelectronic to carbon monoxide (CO). Unlike CO, which is a stable molecule at room temperature and readily serves as both a bridging and terminal ligand to transition metals, BF is unstable below 1800°C in the gas phase, and its coordination chemistry is substantially limited. Here, we report the isolation of the iron complex Fe(BF)(CO)2(CNArTripp2)2 [ArTripp2, 2,6-(2,4,6-(i-Pr)3C6H2]2C6H3; i-Pr, iso-propyl], featuring a terminal BF ligand. Single-crystal x-ray diffraction as well as nuclear magnetic resonance, infrared, and Mössbauer spectroscopic studies on Fe(BF)(CO)2(CNArTripp2)2 and the isoelectronic dinitrogen (N2) and CO complexes Fe(N2)(CO)2(CNArTripp2)2 and Fe(CO)3(CNArTripp2)2 demonstrate that the terminal BF ligand possesses particularly strong σ-donor and π-acceptor properties. Density functional theory and electron-density topology calculations support this conclusion.

11.
Synthesis (Stuttg) ; 48(18): 3031-3041, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28090124

RESUMO

A set of practical synthetic procedures for the iron-catalyzed intermolecular olefin aminohydroxylation reactions in gram scale is reported. In these transformations, a bench-stable functionalized hydroxylamine is applied as the amination reagent. This method is compatible with a broad range of synthetically valuable olefins including those that are incompatible with the existing aminohydroxylation methods. It also provides valuable amino alcohol building blocks with regio- and stereo-chemical arrays that are complementary to known methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA