Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 257(3): 58, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36795167

RESUMO

MAIN CONCLUSION: Nitrogen deficient and drought-tolerant or sensitive potatoes differ in proteomic responses under combined (NWD) and individual stresses. The sensitive genotype 'Kiebitz' exhibits a higher abundance of proteases under NWD. Abiotic stresses such as N deficiency and drought affect the yield of Solanum tuberosum L. tremendously. Therefore, it is of importance to improve potato genotypes in terms of stress tolerance. In this study, we identified differentially abundant proteins (DAPs) in four starch potato genotypes under N deficiency (ND), drought stress (WD), or combined stress (NWD) in two rain-out shelter experiments. The gel-free LC-MS analysis generated a set of 1177 identified and quantified proteins. The incidence of common DAPs in tolerant and sensitive genotypes under NWD indicates general responses to this stress combination. Most of these proteins were part of the amino acid metabolism (13.9%). Three isoforms of S-adenosyl methionine synthase (SAMS) were found to be lower abundant in all genotypes. As SAMS were found upon application of single stresses as well, these proteins appear to be part of the general stress response in potato. Interestingly, the sensitive genotype 'Kiebitz' showed a higher abundance of three proteases (subtilase, carboxypeptidase, subtilase family protein) and a lower abundance of a protease inhibitor (stigma expressed protein) under NWD stress compared to control plants. The comparably tolerant genotype 'Tomba', however, displayed lower abundances of proteases. This indicates a better coping strategy for the tolerant genotype and a quicker reaction to WD when previously stressed with ND.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Secas , Proteômica , Nitrogênio/metabolismo , Genótipo , Peptídeo Hidrolases/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200118

RESUMO

Drought represents a major abiotic stress factor negatively affecting growth, yield and tuber quality of potatoes. Quantitative trait locus (QTL) analyses were performed in cultivated potatoes for drought tolerance index DRYM (deviation of relative starch yield from the experimental median), tuber starch content, tuber starch yield, tuber fresh weight, selected transcripts and metabolites under control and drought stress conditions. Eight genomic regions of major interest for drought tolerance were identified, three representing standalone DRYM QTL. Candidate genes, e.g., from signaling pathways for ethylene, abscisic acid and brassinosteroids, and genes encoding cell wall remodeling enzymes were identified within DRYM QTL. Co-localizations of DRYM QTL and QTL for tuber starch content, tuber starch yield and tuber fresh weight with underlying genes of the carbohydrate metabolism were observed. Overlaps of DRYM QTL with metabolite QTL for ribitol or galactinol may indicate trade-offs between starch and compatible solute biosynthesis. Expression QTL confirmed the drought stress relevance of selected transcripts by overlaps with DRYM QTL. Bulked segregant analyses combined with next-generation sequencing (BSAseq) were used to identify mutations in genes under the DRYM QTL on linkage group 3. Future analyses of identified genes for drought tolerance will give a better insight into drought tolerance in potatoes.


Assuntos
Cromossomos de Plantas/genética , Secas , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Solanum tuberosum/genética , Tetraploidia , Mapeamento Cromossômico , Ligação Genética , Genômica , Fenótipo , Tubérculos/genética , Solanum tuberosum/fisiologia
3.
Plant Biotechnol J ; 16(4): 939-950, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28929574

RESUMO

Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions.


Assuntos
Biomarcadores , Secas , Marcadores Genéticos , Solanum tuberosum/fisiologia , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Aprendizado de Máquina , Modelos Genéticos , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Reprodutibilidade dos Testes , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amido/genética , Amido/metabolismo , Estresse Fisiológico
4.
Agron Sustain Dev ; 38(6): 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30873223

RESUMO

Grain legumes produce high-quality protein for food and feed, and potentially contribute to sustainable cropping systems, but they are grown on only 1.5% of European arable land. Low temporal yield stability is one of the reasons held responsible for the low proportion of grain legumes, without sufficient quantitative evidence. The objective of this study was to compare the yield stability of grain legumes with other crop species in a northern European context and accounting for the effects of scale in the analysis and the data. To avoid aggregation biases in the yield data, we used data from long-term field experiments. The experiments included grain legumes (lupin, field pea, and faba bean), other broad-leaved crops, spring, and winter cereals. Experiments were conducted in the UK, Sweden, and Germany. To compare yield stability between grain legumes and other crops, we used a scale-adjusted yield stability indicator that accounts for the yield differences between crops following Taylor's Power Law. Here, we show that temporal yield instability of grain legumes (30%) was higher than that of autumn-sown cereals (19%), but lower than that of other spring-sown broad-leaved crops (35%), and only slightly greater than spring-sown cereals (27%). With the scale-adjusted yield stability indicator, we estimated 21% higher yield stability for grain legumes compared to a standard stability measure. These novel findings demonstrate that grain legume yields are as reliable as those of other spring-sown crops in major production systems of northern Europe, which could influence the current negative perception on grain legume cultivation. Initiatives are still needed to improve the crops agronomy to provide higher and more stable yields in future.

5.
Plant Cell Environ ; 39(11): 2370-2389, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27341794

RESUMO

Systems responses to drought stress of four potato reference cultivars with differential drought tolerance (Solanum tuberosum L.) were investigated by metabolome profiling and RNA sequencing. Systems analysis was based on independent field and greenhouse trials. Robust differential drought responses across all cultivars under both conditions comprised changes of proline, raffinose, galactinol, arabitol, arabinonic acid, chlorogenic acid and 102 transcript levels. The encoded genes contained a high proportion of heat shock proteins and proteins with signalling or regulatory functions, for example, a homolog of abscisic acid receptor PYL4. Constitutive differences of the tolerant compared with the sensitive cultivars included arbutin, octopamine, ribitol and 248 transcripts. The gene products of many of these transcripts were pathogen response related, such as receptor kinases, or regulatory proteins, for example, a homolog of the Arabidopsis FOUR LIPS MYB-regulator of stomatal cell proliferation. Functional enrichment analyses imply heat stress as a major acclimation component of potato leaves to long-term drought stress. Enhanced heat stress during drought can be caused by loss of transpiration cooling. This effect and CO2 limitation are the main consequences of drought-induced or abscisic acid-induced stomatal closure. Constitutive differences in metabolite and transcript levels between tolerant and sensitive cultivars indicate interactions of drought tolerance and pathogen resistance in potato.


Assuntos
Resposta ao Choque Térmico/genética , Metaboloma , Solanum tuberosum/fisiologia , Estresse Fisiológico , Dióxido de Carbono/metabolismo , Desidratação , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Análise de Componente Principal , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transcriptoma
6.
Genes (Basel) ; 12(4)2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800602

RESUMO

Potato is regarded as drought sensitive and most vulnerable to climate changes. Its cultivation in drought prone regions or under conditions of more frequent drought periods, especially in subtropical areas, requires intensive research to improve drought tolerance in order to guarantee high yields under limited water supplies. A candidate gene approach was used to develop functional simple sequence repeat (SSR) markers for association studies in potato with the aim to enhance breeding for drought tolerance. SSR primer combinations, mostly surrounding interrupted complex and compound repeats, were derived from 103 candidate genes for drought tolerance. Validation of the SSRs was performed in an association panel representing 34 mainly starch potato cultivars. Seventy-five out of 154 SSR primer combinations (49%) resulted in polymorphic, highly reproducible banding patterns with polymorphic information content (PIC) values between 0.11 and 0.90. Five SSR markers identified allelic differences between the potato cultivars that showed significant associations with drought sensitivity. In all cases, the group of drought-sensitive cultivars showed predominantly an additional allele, indicating that selection against these alleles by marker-assisted breeding might confer drought tolerance. Further studies of these differences in the candidate genes will elucidate their role for an improved performance of potatoes under water-limited conditions.


Assuntos
Repetições de Microssatélites , Solanum tuberosum/fisiologia , Estresse Fisiológico , Biologia Computacional/métodos , DNA de Plantas/genética , Secas , Estudos de Associação Genética , Melhoramento Vegetal , Solanum tuberosum/genética
7.
Front Plant Sci ; 11: 1071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793257

RESUMO

Climate models predict an increased likelihood of drought, demanding efficient selection for drought tolerance to maintain yield stability. Classic tolerance breeding relies on selection for yield in arid environments, which depends on yield trials and takes decades. Breeding could be accelerated by marker-assisted selection (MAS). As an alternative to genomic markers, transcript and metabolite markers have been suggested for important crops but also for orphan corps. For potato, we suggested a random-forest-based model that predicts tolerance from leaf metabolite and transcript levels with a precision of more than 90% independent of the agro-environment. To find out how the model based selection compares to yield-based selection in arid environments, we applied this approach to a population of 200 tetraploid Solanum tuberosum ssp. tuberosum lines segregating for drought tolerance. Twenty-four lines were selected into a phenotypic subpopulation (PPt) for superior tolerance based on relative tuber starch yield data from three drought stress trials. Two subpopulations with superior (MPt) and inferior (MPs) tolerance were selected based on drought tolerance predictions based on leaf metabolite and transcript levels from two sites. The 60 selected lines were phenotyped for yield and drought tolerance in 10 multi-environment drought stress trials representing typical Central European drought scenarios. Neither selection affected development or yield potential. Lines with superior drought tolerance and high yields under stress were over-represented in both populations selected for superior tolerance, with a higher number in PPt compared to MPt. However, selection based on leaf metabolites may still be an alternative to yield-based selection in arid environments as it works on leaves sampled in breeder's fields independent of drought trials. As the selection against low tolerance was ineffective, the method is best used in combination with tools that select against sensitive genotypes. Thus, metabolic and transcript marker-based selection for drought tolerance is a viable alternative to the selection on yield in arid environments.

8.
Nat Plants ; 5(7): 706-714, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209285

RESUMO

The world cropping area for wheat exceeds that of any other crop, and high grain yields in intensive wheat cropping systems are essential for global food security. Breeding has raised yields dramatically in high-input production systems; however, selection under optimal growth conditions is widely believed to diminish the adaptive capacity of cultivars to less optimal cropping environments. Here, we demonstrate, in a large-scale study spanning five decades of wheat breeding progress in western Europe, where grain yields are among the highest worldwide, that breeding for high performance in fact enhances cultivar performance not only under optimal production conditions but also in production systems with reduced agrochemical inputs. New cultivars incrementally accumulated genetic variants conferring favourable effects on key yield parameters, disease resistance, nutrient use efficiency, photosynthetic efficiency and grain quality. Combining beneficial, genome-wide haplotypes could help breeders to more efficiently exploit available genetic variation, optimizing future yield potential in more sustainable production systems.


Assuntos
Agroquímicos/farmacologia , Triticum/crescimento & desenvolvimento , Agroquímicos/análise , Genoma de Planta , Haplótipos , Fotossíntese , Melhoramento Vegetal , Sementes/química , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/metabolismo , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo
9.
Funct Plant Biol ; 42(7): 655-667, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480709

RESUMO

Climate models predict an increased likelihood of seasonal droughts for many areas of the world. Breeding for drought tolerance could be accelerated by marker-assisted selection. As a basis for marker identification, we studied the genetic variance, predictability of field performance and potential costs of tolerance in potato (Solanum tuberosum L.). Potato produces high calories per unit of water invested, but is drought-sensitive. In 14 independent pot or field trials, 34 potato cultivars were grown under optimal and reduced water supply to determine starch yield. In an artificial dataset, we tested several stress indices for their power to distinguish tolerant and sensitive genotypes independent of their yield potential. We identified the deviation of relative starch yield from the experimental median (DRYM) as the most efficient index. DRYM corresponded qualitatively to the partial least square model-based metric of drought stress tolerance in a stress effect model. The DRYM identified significant tolerance variation in the European potato cultivar population to allow tolerance breeding and marker identification. Tolerance results from pot trials correlated with those from field trials but predicted field performance worse than field growth parameters. Drought tolerance correlated negatively with yield under optimal conditions in the field. The distribution of yield data versus DRYM indicated that tolerance can be combined with average yield potentials, thus circumventing potential yield penalties in tolerance breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA