Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499147

RESUMO

Receptor heteromerization is the formation of a complex involving at least two different receptors with pharmacology that is distinct from that exhibited by its constituent receptor units. Detection of these complexes and monitoring their pharmacology is crucial for understanding how receptors function. The Receptor-Heteromer Investigation Technology (Receptor-HIT) utilizes ligand-dependent modulation of interactions between receptors and specific biomolecules for the detection and profiling of heteromer complexes. Previously, the interacting biomolecules used in Receptor-HIT assays have been intracellular proteins, however in this study we have for the first time used bioluminescence resonance energy transfer (BRET) with fluorescently-labeled ligands to investigate heteromerization of receptors on the cell surface. Using the Receptor-HIT ligand binding assay with NanoBRET, we have successfully investigated heteromers between the angiotensin II type 1 (AT1) receptor and the ß2 adrenergic receptor (AT1-ß2AR heteromer), as well as between the AT1 and angiotensin II type 2 receptor (AT1-AT2 heteromer).


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Ligantes , Nanotecnologia/métodos , Receptores de Angiotensina/metabolismo , Ligação Competitiva , Compostos de Boro/química , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Cinética , Ligação Proteica , Multimerização Proteica , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
2.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379211

RESUMO

Hemorphins are known for their role in the control of blood pressure. Recently, we revealed the positive modulation of the angiotensin II (AngII) type 1 receptor (AT1R) by LVV-hemorphin-7 (LVV-H7) in human embryonic kidney (HEK293) cells. Here, we examined the molecular binding behavior of LVV-H7 on AT1R and its effect on AngII binding using a nanoluciferase-based bioluminescence resonance energy transfer (NanoBRET) assay in HEK293FT cells, as well as molecular docking and molecular dynamics (MD) studies. Saturation and real-time kinetics supported the positive effect of LVV-H7 on the binding of AngII. While the competitive antagonist olmesartan competed with AngII binding, LVV-H7 slightly, but significantly, decreased AngII's kD by 2.6 fold with no effect on its Bmax. Molecular docking and MD simulations indicated that the binding of LVV-H7 in the intracellular region of AT1R allosterically potentiates AngII binding. LVV-H7 targets residues on intracellular loops 2 and 3 of AT1R, which are known binding sites of allosteric modulators in other GPCRs. Our data demonstrate the allosteric effect of LVV-H7 on AngII binding, which is consistent with the positive modulation of AT1R activity and signaling previously reported. This further supports the pharmacological targeting of AT1R by hemorphins, with implications in vascular and renal physiology.


Assuntos
Angiotensina II/metabolismo , Hemoglobinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
3.
Hum Mutat ; 40(10): 1841-1855, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31112317

RESUMO

The activities of DNA-binding transcription factors, such as the multi-zinc-finger protein ZBTB18 (also known as RP58, or ZNF238), are essential to coordinate mammalian neurodevelopment, including the birth and radial migration of newborn neurons within the fetal brain. In humans, the majority of disease-associated missense mutations in ZBTB18 lie within the DNA-binding zinc-finger domain and are associated with brain developmental disorder, yet the molecular mechanisms explaining their role in disease remain unclear. To address this, we developed in silico models of ZBTB18, bound to DNA, and discovered that half of the missense variants map to residues (Asn461, Arg464, Glu486) predicted to be essential to sequence-specific DNA contact, whereas others map to residues (Leu434, Tyr447, Arg495) with limited contributions to DNA binding. We studied pathogenic variants to residues with close (N461S) and limited (R495G) DNA contact and found that each bound DNA promiscuously, displayed altered transcriptional regulatory activity in vitro, and influenced the radial migration of newborn neurons in vivo in different ways. Taken together, our results suggest that altered transcriptional regulation could represent an important pathological mechanism for ZBTB18 missense variants in brain developmental disease.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Proteínas Repressoras/genética , Dedos de Zinco/genética , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Relação Estrutura-Atividade
4.
J Biol Chem ; 291(24): 12641-12657, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27036939

RESUMO

CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.


Assuntos
Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Animais , Especificidade de Anticorpos/imunologia , Sítios de Ligação/imunologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Células Cultivadas , Cristalografia por Raios X , Mapeamento de Epitopos , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Células HL-60 , Humanos , Células Jurkat , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Modelos Moleculares , Ligação Proteica/imunologia , Domínios Proteicos , Receptores CXCR4/metabolismo , Anticorpos de Domínio Único/química , Ressonância de Plasmônio de Superfície
5.
J Biol Chem ; 287(16): 12952-65, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371491

RESUMO

We have provided the first evidence for specific heteromerization between the α(1A)-adrenoceptor (α(1A)AR) and CXC chemokine receptor 2 (CXCR2) in live cells. α(1A)AR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified norepinephrine-dependent ß-arrestin recruitment that was in turn dependent upon co-expression of α(1A)AR with CXCR2. These findings have been supported by co-localization observed using confocal microscopy. This norepinephrine-dependent ß-arrestin recruitment was inhibited not only by the α(1)AR antagonist Terazosin but also by the CXCR2-specific allosteric inverse agonist SB265610. Furthermore, Labetalol, which is marketed for hypertension as a nonselective ß-adrenoceptor antagonist with α(1)AR antagonist properties, was identified as a heteromer-specific-biased agonist exhibiting partial agonism for inositol phosphate production but essentially full agonism for ß-arrestin recruitment at the α(1A)AR-CXCR2 heteromer. Finally, bioluminescence resonance energy transfer studies with both receptors tagged suggest that α(1A)AR-CXCR2 heteromerization occurs constitutively and is not modulated by ligand. These findings support the concept of GPCR heteromer complexes exhibiting distinct pharmacology, thereby providing additional mechanisms through which GPCRs can potentially achieve their diverse biological functions. This has important implications for the use and future development of pharmaceuticals targeting these receptors.


Assuntos
Próstata/metabolismo , Estrutura Quaternária de Proteína , Receptores Adrenérgicos alfa 1/química , Receptores de Interleucina-8B/química , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Regulação Alostérica/fisiologia , Animais , Arrestinas/metabolismo , Células CHO , Quimiocinas/metabolismo , Cricetinae , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Labetalol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Prazosina/análogos & derivados , Prazosina/farmacologia , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-8B/metabolismo , beta-Arrestinas
6.
Front Endocrinol (Lausanne) ; 13: 848816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721749

RESUMO

The angiotensin type 2 (AT2) receptor and the bradykinin type 2 (B2) receptor are G protein-coupled receptors (GPCRs) that have major roles in the cardiovascular system. The two receptors are known to functionally interact at various levels, and there is some evidence that the observed crosstalk may occur as a result of heteromerization. We investigated evidence for heteromerization of the AT2 receptor and the B2 receptor in HEK293FT cells using various bioluminescence resonance energy transfer (BRET)-proximity based assays, including the Receptor Heteromer Investigation Technology (Receptor-HIT) and the NanoBRET ligand-binding assay. The Receptor-HIT assay showed that Gαq, GRK2 and ß-arrestin2 recruitment proximal to AT2 receptors only occurred upon B2 receptor coexpression and activation, all of which is indicative of AT2-B2 receptor heteromerization. Additionally, we also observed specific coupling of the B2 receptor with the Gαz protein, and this was found only in cells coexpressing both receptors and stimulated with bradykinin. The recruitment of Gαz, Gαq, GRK2 and ß-arrestin2 was inhibited by B2 receptor but not AT2 receptor antagonism, indicating the importance of B2 receptor activation within AT2-B2 heteromers. The close proximity between the AT2 receptor and B2 receptor at the cell surface was also demonstrated with the NanoBRET ligand-binding assay. Together, our data demonstrate functional interaction between the AT2 receptor and B2 receptor in HEK293FT cells, resulting in novel pharmacology for both receptors with regard to Gαq/GRK2/ß-arrestin2 recruitment (AT2 receptor) and Gαz protein coupling (B2 receptor). Our study has revealed a new mechanism for the enigmatic and poorly characterized AT2 receptor to be functionally active within cells, further illustrating the role of heteromerization in the diversity of GPCR pharmacology and signaling.


Assuntos
Receptor Tipo 2 de Angiotensina , Receptor B2 da Bradicinina , Bradicinina/farmacologia , Ligantes , Receptor Tipo 2 de Angiotensina/fisiologia , Receptor B2 da Bradicinina/fisiologia , Receptores Acoplados a Proteínas G , beta-Arrestina 2
7.
Biochem Pharmacol ; 188: 114521, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741329

RESUMO

Transactivation of the epidermal growth factor receptor (EGFR) by the angiotensin II (AngII) type 1 (AT1) receptor is involved in AT1 receptor-dependent growth effects and cardiovascular pathologies, however the mechanisms underpinning this transactivation are yet to be fully elucidated. Recently, a potential intermediate of this process was identified following the discovery that a kinase called TRIO was involved in AngII/AT1 receptor-mediated transactivation of EGFR. To investigate the mechanisms by which TRIO acts as an intermediate in AngII/AT1 receptor-mediated EGFR transactivation we used bioluminescence resonance energy transfer (BRET) assays to investigate proximity between the AT1 receptor, EGFR, TRIO and other proteins of interest. We found that AngII/AT1 receptor activation caused a Gαq-dependent increase in proximity of TRIO with Gγ2 and the AT1-EGFR heteromer, as well as trafficking of TRIO towards the Kras plasma membrane marker and into early, late and recycling endosomes. In contrast, we found that AngII/AT1 receptor activation caused a Gαq-independent increase in proximity of TRIO with Grb2, GRK2 and PKCζ, as well as trafficking of TRIO up to the plasma membrane from the Golgi. Furthermore, we confirmed the proximity between the AT1 receptor and the EGFR using the Receptor-Heteromer Investigation Technology, which showed AngII-induced recruitment of Grb2, GRK2, PKCζ, Gγ2 and TRIO to the EGFR upon AT1 coexpression. In summary, our results provide further evidence for the existence of the AT1-EGFR heteromer and reveal potential mechanisms by which TRIO contributes to the transactivation process.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/fisiologia , Angiotensina II/farmacologia , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Receptor Tipo 2 de Angiotensina/agonistas , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia
8.
Nat Commun ; 12(1): 1920, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772001

RESUMO

Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Everolimo/farmacologia , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imidazóis/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Oncogenes/genética , Ligação Proteica , Quinolinas/farmacologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Mol Endocrinol ; 23(4): 559-71, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19179480

RESUMO

Nephrogenic syndrome of inappropriate antidiuresis is a recently identified genetic disease first described in two unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. It was found that each infant had a different mutation of the vasopressin type II receptor (V2R) at codon 137 where arginine was converted to cysteine or leucine (R137C or R137L), resulting in constitutive signaling. Interestingly, a missense mutation at the same codon, converting arginine to histidine (R137H), leads to the opposite disease phenotype with a loss of the kidney's ability to concentrate urine resulting in nephrogenic diabetes insipidus. This mutation is associated with impaired signaling, although whether this is predominantly due to impaired trafficking to the plasma membrane, agonist-independent internalization, or G protein uncoupling is currently unclear. Using bioluminescence resonance energy transfer and confocal microscopy, we demonstrate that both V2R-R137C and V2R-R137L mutants interact with beta-arrestins in an agonist-independent manner resulting in dynamin-dependent internalization. This phenotype is similar to that observed for V2R-R137H, which is intriguing considering that it is accompanied by constitutive rather than impaired signaling. Consequently, it would seem that agonist-independent internalization per se is unlikely to be the major determinant of impaired V2R-R137H signaling. Our findings indicate that the V2R-R137C and V2R-R137L mutants traffic considerably more efficiently to the plasma membrane than V2R-R137H, identifying this as a potentially important mutation-dependent difference affecting V2R function.


Assuntos
Arrestinas/metabolismo , Diabetes Insípido Nefrogênico/etiologia , Hiponatremia , Síndrome de Secreção Inadequada de HAD , Receptores de Vasopressinas , Animais , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Arrestinas/genética , Linhagem Celular , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/fisiopatologia , Humanos , Hiponatremia/etiologia , Hiponatremia/fisiopatologia , Síndrome de Secreção Inadequada de HAD/complicações , Síndrome de Secreção Inadequada de HAD/metabolismo , Síndrome de Secreção Inadequada de HAD/fisiopatologia , Lactente , Masculino , Microscopia Confocal/métodos , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , beta-Arrestinas
10.
Cell Signal ; 54: 27-34, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471466

RESUMO

Bioluminescence resonance energy transfer (BRET) is a versatile tool used to investigate membrane receptor signalling and function. We have recently developed a homogenous NanoBRET ligand binding assay to monitor interactions between G protein-coupled receptors and fluorescent ligands. However, this assay requires the exogenous expression of a receptor fused to the nanoluciferase (Nluc) and is thus not applicable to natively-expressed receptors. To overcome this limitation in HEK293 cells, we have utilised CRISPR/Cas9 genome engineering to insert Nluc in-frame with the endogenous ADORA2B locus this resulted in HEK293 cells expressing adenosine A2B receptors under endogenous promotion tagged on their N-terminus with Nluc. As expected, we found relatively low levels of endogenous (gene-edited) Nluc/A2B receptor expression compared to cells transiently transfected with expression vectors coding for Nluc/A2B. However, in cells expressing gene-edited Nluc/A2B receptors we observed clear saturable ligand binding of a non-specific fluorescent adenosine receptor antagonist XAC-X-BY630 (Kd = 21.4 nM). Additionally, at gene-edited Nluc/A2B receptors we derived pharmacological parameters of ligand binding; Kd as well as Kon and Koff for binding of XAC-X-BY630 by NanoBRET association kinetic binding assays. Lastly, cells expressing gene-edited Nluc/A2B were used to determine the pKi of unlabelled adenosine receptor ligands in competition ligand binding assays. Utilising CRISPR/Cas9 genome engineering here we show that NanoBRET ligand binding assays can be performed at gene-edited receptors under endogenous promotion in live cells, therefore overcoming a fundamental limitation of NanoBRET ligand assays.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Receptor A2B de Adenosina/análise , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Luciferases/química
11.
J Biomol Screen ; 13(9): 888-98, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18812574

RESUMO

The bioluminescence resonance energy transfer (BRET) technique has become extremely popular for studying protein-protein interactions in living cells and real time. Of particular interest is the ability to monitor interactions between G protein-coupled receptors, such as the thyrotropin-releasing hormone receptor (TRHR), and proteins critical for regulating their function, such as beta-arrestin. Using TRHR/beta-arrestin interactions, we have demonstrated improvements to all 3 generations of BRET (BRET(1), BRET(2), and eBRET) by using the novel forms of luciferase, Rluc2 and Rluc8, developed by the Gambhir laboratory. Furthermore, for the 1st time it was possible to use the BRET2 system to detect ligand-induced G protein-coupled receptor/beta-arrestin interactions over prolonged periods (on the scale of hours rather than seconds) with a very stable signal. As demonstrated by our Z'-factor data, these luciferases increase the sensitivity of BRET to such an extent that they substantially increase the potential applicability of this technology for effective drug discovery high-throughput screening.


Assuntos
Transferência de Energia , Receptores Acoplados a Proteínas G/química , Linhagem Celular , Desenho de Fármacos , Descoberta de Drogas , Humanos , Fosfatos de Inositol/química , Cinética , Luciferases/química , Proteínas Luminescentes/química , Receptores do Hormônio Liberador da Tireotropina/química , Proteínas Recombinantes de Fusão/química , Fatores de Tempo
12.
Sci Rep ; 7(1): 3187, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600500

RESUMO

Bioluminescence resonance energy transfer (BRET) has been a vital tool for understanding G protein-coupled receptor (GPCR) function. It has been used to investigate GPCR-protein and/or -ligand interactions as well as GPCR oligomerisation. However the utility of BRET is limited by the requirement that the fusion proteins, and in particular the donor, need to be exogenously expressed. To address this, we have used CRISPR/Cas9-mediated homology-directed repair to generate protein-Nanoluciferase (Nluc) fusions under endogenous promotion, thus allowing investigation of proximity between the genome-edited protein and an exogenously expressed protein by BRET. Here we report BRET monitoring of GPCR-mediated ß-arrestin2 recruitment and internalisation where the donor luciferase was under endogenous promotion, in live cells and in real time. We have investigated the utility of CRISPR/Cas9 genome editing to create genome-edited fusion proteins that can be used as BRET donors and propose that this strategy can be used to overcome the need for exogenous donor expression.


Assuntos
Sistemas CRISPR-Cas/genética , Transferência de Energia/genética , Luciferases/química , beta-Arrestinas/genética , Edição de Genes , Humanos , Ligantes , Luciferases/genética , Nanopartículas/química , Ligação Proteica , Proteínas/química , Proteínas/genética , Transdução de Sinais/genética , beta-Arrestinas/química
13.
Mol Endocrinol ; 30(8): 889-904, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27355191

RESUMO

Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive ß-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor "life-cycle," we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis.


Assuntos
Mutação/genética , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Pré-Escolar , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Masculino , Microscopia Confocal , Polimorfismo Genético , Ligação Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo
14.
PLoS One ; 10(3): e0119803, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807547

RESUMO

Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1) and Chemokine (C-C motif) Receptor 2 (CCR2). However the molecular mechanisms are not understood. We investigated AT1-CCR2 functional interaction in vitro using bioluminescence resonance energy transfer in HEK293 cells and in vivo using subtotal-nephrectomized rats as a well-established model for chronic kidney disease. Our data revealed functional heteromers of these receptors resulting in CCR2-Gαi1 coupling being sensitive to AT1 activation, as well as apparent enhanced ß-arrestin2 recruitment with agonist co-stimulation that is synergistically reversed by combined antagonist treatment. Moreover, we present in vivo findings where combined treatment with AT1- and CCR2-selective inhibitors was synergistically beneficial in terms of decreasing proteinuria, reducing podocyte loss and preventing renal injury independent of blood pressure in the subtotal-nephrectomized rat model. Our findings further support a role for G protein-coupled receptor functional heteromerization in pathophysiology and provide insights into previous observations indicating the importance of AT1-CCR2 functional interaction in inflammation, renal and hypertensive disorders.


Assuntos
Receptores CCR2/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Rim/metabolismo , Nefrectomia , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo
15.
PLoS One ; 8(5): e64672, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700486

RESUMO

Heteromerization can play an important role in regulating the activation and/or signal transduction of most forms of receptors, including receptor tyrosine kinases (RTKs). The study of receptor heteromerization has evolved extensively with the emergence of resonance energy transfer based approaches such as bioluminescence resonance energy transfer (BRET). Here, we report an adaptation of our Receptor-Heteromer Investigation Technology (Receptor-HIT) that has recently been published as the G protein-coupled receptor (GPCR) Heteromer Identification Technology (GPCR-HIT). We now demonstrate the utility of this approach for investigating RTK heteromerization by examining the functional interaction between the epidermal growth factor (EGF) receptor (EGFR; also known as erbB1/HER1) and heregulin (HRG) receptor 3 (HER3; also known as erbB3) in live HEK293FT cells using recruitment of growth factor receptor-bound protein 2 (Grb2) to the activated receptors. We found that EGFR and HER3 heteromerize specifically as demonstrated by HRG inducing a BRET signal between EGFR/Rluc8 and Grb2/Venus only when HER3 was co-expressed. Similarly, EGF stimulation promoted a specific BRET signal between HER3/Rluc8 and Grb2/Venus only when EGFR was co-expressed. Both EGF and HRG effects on Grb2 interaction are dose-dependent, and specifically blocked by EGFR inhibitor AG-1478. Furthermore, truncation of HER3 to remove the putative Grb2 binding sites appears to abolish EGF-induced Grb2 recruitment to the EGFR-HER3 heteromer. Our results support the concept that EGFR interacts with Grb2 in both constitutive and EGF-dependent manners and this interaction is independent of HER3 co-expression. In contrast, HER3-Grb2 interaction requires the heteromerization between EGFR and HER3. These findings clearly indicate the importance of EGFR-HER3 heteromerization in HER3-mediated Grb2-dependent signaling pathways and supports the central role of HER3 in the diversity and regulation of HER family functioning.


Assuntos
Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/metabolismo , Multimerização Proteica , Receptor ErbB-3/metabolismo , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Proteína Adaptadora GRB2/antagonistas & inibidores , Células HEK293 , Humanos , Cinética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Quinazolinas/farmacologia , Transdução de Sinais , Tirfostinas/farmacologia
16.
Assay Drug Dev Technol ; 9(1): 21-30, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21133678

RESUMO

Understanding the role of G protein-coupled receptor (GPCR; also known as a 7 transmembrane receptor) heteromerization in the physiology and pathophysiology of cellular function has now become a major research focus. However, there is currently a lack of cell-based assays capable of profiling the specific functional consequences of heteromerization in a ligand-dependent manner. Understanding the pharmacology specifically associated with heteromer function in contrast to monomer or homomer function enables the so-called biochemical fingerprints of the receptor heteromer to be ascertained. This is the first step in establishing the physiological relevance of heteromerization, the goal of everyone in the field, as these fingerprints can then be utilized in future endeavors to elucidate heteromer function in native tissues. The simple, robust, ligand-dependent methodology described in this study utilizes a novel configuration of components of a proximity-based reporter system. This is exemplified by the use of bioluminescence resonance energy transfer due to the advantages of real-time live cell monitoring of proximity specifically between the heteromer complex and a protein that is recruited in a ligand-dependent manner, in this case, ß-arrestin 2. Further, the demonstration of Z'-factor values in excess of 0.6 shows the potential of the method for screening compounds for heteromer-selective or biased activity. Three previously characterized GPCR heteromers, the chemokine receptor heteromers CCR2-CCR5 and CCR2-CXCR4, as well as the angiotensin II receptor type 1-bradykinin receptor type 2 heteromer, have been used to illustrate the profiling capability and specificity of the GPCR heteromer identification technology.


Assuntos
Arrestinas/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Mapeamento de Interação de Proteínas/métodos , Receptores Acoplados a Proteínas G/metabolismo , Biotecnologia/métodos , Células HEK293 , Humanos , Multimerização Proteica , beta-Arrestina 2 , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA