Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Top Microbiol Immunol ; 420: 49-72, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30178262

RESUMO

Mycobacteria, from saprophytic to pathogenic species, encounter diverse environments that demand metabolic versatility and rapid adaptation from these bacteria for their survival. The human pathogen Mycobacterium tuberculosis, for example, can enter a reversible state of dormancy in which it is metabolically active, but does not increase in number, and which is believed to enable its survival in the human host for years, with attendant risk for reactivation to active tuberculosis. Driven by the need to combat mycobacterial diseases like tuberculosis, efforts to understand such adaptations have benefitted in recent years from application of activity-based probes. These studies have been inspired by the potential of these chemical tools to uncover protein function for previously unannotated proteins, track shifts in protein activity as a function of environment, and provide a streamlined method for screening and developing inhibitors. Here we seek to contextualize progress thus far with achieving these goals and highlight the unique challenges and opportunities for activity-based probes to further our understanding of protein function and regulation, bacterial physiology, and antibiotic development.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Adaptação Fisiológica , Antibacterianos , Proteínas de Bactérias/química , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Proteoma/química , Tuberculose/microbiologia
2.
PLoS Pathog ; 12(1): e1005351, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26751071

RESUMO

Mycobacterium tuberculosis (Mtb) mutants lacking rv1411c, which encodes the lipoprotein LprG, and rv1410c, which encodes a putative efflux pump, are dramatically attenuated for growth in mice. Here we show that loss of LprG-Rv1410 in Mtb leads to intracellular triacylglyceride (TAG) accumulation, and overexpression of the locus increases the levels of TAG in the culture medium, demonstrating a role of this locus in TAG transport. LprG binds TAG within a large hydrophobic cleft and is sufficient to transfer TAG from donor to acceptor membranes. Further, LprG-Rv1410 is critical for broadly regulating bacterial growth and metabolism in vitro during carbon restriction and in vivo during infection of mice. The growth defect in mice is due to disrupted bacterial metabolism and occurs independently of key immune regulators. The in vivo essentiality of this locus suggests that this export system and other regulators of metabolism should be considered as targets for novel therapeutics.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Lipoproteínas/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Mutantes , Virulência
3.
J Bacteriol ; 199(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28069821

RESUMO

We report here the behavior of naturally occurring and rationally engineered preQ1 riboswitches and their application to inducible gene regulation in mycobacteria. Because mycobacteria lack preQ1 biosynthetic genes, we hypothesized that preQ1 could be used as an exogenous nonmetabolite ligand to control riboswitches in mycobacteria. Selected naturally occurring preQ1 riboswitches were assayed and successfully drove preQ1-dependent repression of a green fluorescent protein reporter in Mycobacterium smegmatis Using structure-based design, we engineered three preQ1 riboswitches from Thermoanaerobacter tencongensis, Bacillus subtilis, and Lactobacillus rhamnosus toward achieving higher response ratios and increased repression. Assuming a steady-state model, variants of the T. tencongensis riboswitch most closely followed the predicted trends. Unexpectedly, the preQ1 dose response was best described by a model with a second, independent preQ1 binding site. This behavior was general to the preQ1 riboswitch family, since the wild type and rationally designed mutants of riboswitches from all three bacteria behaved analogously. Across all variants, the response ratios, which describe expression in the absence versus the presence of preQ1, ranged from <2 to ∼10, but repression in all cases was incomplete up to 1 mM preQ1. By reducing the transcript expression level, we obtained a preQ1 riboswitch variant appropriate for inducible knockdown applications. We further showed that the preQ1 response is reversible, is titratable, and can be used to control protein expression in mycobacteria within infected macrophages. By engineering naturally occurring preQ1 riboswitches, we have not only extended the tools available for inducible gene regulation in mycobacteria but also uncovered new behavior of these riboswitches.IMPORTANCE Riboswitches are elements found in noncoding regions of mRNA that regulate gene expression, typically in response to an endogenous metabolite. Riboswitches have emerged as important tools for inducible gene expression in diverse organisms. We noted that mycobacteria lack the biosynthesis genes for preQ1, a ligand for riboswitches from diverse bacteria. Predicting that preQ1 is not present in mycobacteria, we showed that it controls optimized riboswitches appropriate for gene knockdown applications. Further, the riboswitch response is subject to a second independent preQ1 binding event that has not been previously documented. By engineering naturally occurring riboswitches, we have uncovered a new behavior, with implications for riboswitch function in its native context, and extended the tools available for inducible gene regulation in mycobacteria.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/metabolismo , Pirimidinonas , Pirróis , Riboswitch/fisiologia , Bacillus subtilis , Sequência de Bases , Engenharia Genética , Lacticaseibacillus rhamnosus , Mycobacterium smegmatis/genética , Nucleosídeo Q/metabolismo , Riboswitch/genética , Thermoanaerobacter
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1340-1354, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28110100

RESUMO

The complex organization of the mycobacterial cell wall poses unique challenges for the study of its assembly. Although mycobacteria are classified evolutionarily as Gram-positive bacteria, their cell wall architecture more closely resembles that of Gram-negative organisms. They possess not only an inner cytoplasmic membrane, but also a bilayer outer membrane that encloses an aqueous periplasm and includes diverse lipids that are required for the survival and virulence of pathogenic species. Questions surrounding how mycobacterial outer membrane lipids are transported from where they are made in the cytoplasm to where they function at the cell exterior are thus similar, and similarly compelling, to those that have driven the study of Gram-negative outer membrane transport pathways. However, little is understood about these processes in mycobacteria. Here we contextualize these questions by comparing our current knowledge of mycobacteria with better-defined systems in other organisms. Based on this analysis, we propose possible models and highlight continuing challenges to improving our understanding of outer membrane assembly in these medically and environmentally important bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium/metabolismo , Proteínas de Bactérias/química , Transporte Biológico , Citoplasma/metabolismo , Proteínas de Membrana Transportadoras/química , Conformação Proteica , Relação Estrutura-Atividade
5.
J Bacteriol ; 197(1): 201-10, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25331437

RESUMO

Trehalose glycolipids are found in many bacteria in the suborder Corynebacterineae, but methyl-branched acyltrehaloses are exclusive to virulent species such as the human pathogen Mycobacterium tuberculosis. In M. tuberculosis, the acyltransferase PapA3 catalyzes the formation of diacyltrehalose (DAT), but the enzymes responsible for downstream reactions leading to the final product, polyacyltrehalose (PAT), have not been identified. The PAT biosynthetic gene locus is similar to that of another trehalose glycolipid, sulfolipid 1. Recently, Chp1 was characterized as the terminal acyltransferase in sulfolipid 1 biosynthesis. Here we provide evidence that the homologue Chp2 (Rv1184c) is essential for the final steps of PAT biosynthesis. Disruption of chp2 led to the loss of PAT and a novel tetraacyltrehalose species, TetraAT, as well as the accumulation of DAT, implicating Chp2 as an acyltransferase downstream of PapA3. Disruption of the putative lipid transporter MmpL10 resulted in a similar phenotype. Chp2 activity thus appears to be regulated by MmpL10 in a relationship similar to that between Chp1 and MmpL8 in sulfolipid 1 biosynthesis. Chp2 is localized to the cell envelope fraction, consistent with its role in DAT modification and possible regulatory interactions with MmpL10. Labeling of purified Chp2 by an activity-based probe was dependent on the presence of the predicted catalytic residue Ser141 and was inhibited by the lipase inhibitor tetrahydrolipstatin (THL). THL treatment of M. tuberculosis resulted in selective inhibition of Chp2 over PapA3, confirming Chp2 as a member of the serine hydrolase superfamily. Efforts to produce in vitro reconstitution of acyltransferase activity using straight-chain analogues were unsuccessful, suggesting that Chp2 has specificity for native methyl-branched substrates.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Mycobacterium tuberculosis/metabolismo , Trealose/análogos & derivados , Aciltransferases/genética , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Lactonas/farmacologia , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Orlistate , Estrutura Terciária de Proteína
6.
Biochemistry ; 54(35): 5457-68, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26271001

RESUMO

Although they are classified as Gram-positive bacteria, Corynebacterineae possess an asymmetric outer membrane that imparts structural and thereby physiological similarity to more distantly related Gram-negative bacteria. Like lipopolysaccharide in Gram-negative bacteria, lipids in the outer membrane of Corynebacterineae have been associated with the virulence of pathogenic species such as Mycobacterium tuberculosis (Mtb). For example, Mtb strains that lack long, branched-chain alkyl esters known as dimycocerosates (DIMs) are significantly attenuated in model infections. The resultant interest in the biosynthetic pathway of these unusual virulence factors has led to the elucidation of many of the steps leading to the final esterification of the alkyl ß-diol, phthiocerol, with branched-chain fatty acids known as mycocerosates. PapA5 is an acyltransferase implicated in these final reactions. Here, we show that PapA5 is indeed the terminal enzyme in DIM biosynthesis by demonstrating its dual esterification activity and chain-length preference using synthetic alkyl ß-diol substrate analogues. By applying these analogues to a series of PapA5 mutants, we also revise a model for the substrate binding within PapA5. Finally, we demonstrate that the Mtb Ser/Thr kinases PknB and PknE modify PapA5 on three overlapping Thr residues and that a fourth Thr is unique to PknE phosphorylation. These results clarify the DIM biosynthetic pathway and indicate post-translational modifications that warrant further elucidation for their roles in the regulation of DIM biosynthesis.


Assuntos
Aciltransferases/metabolismo , Lipídeos/biossíntese , Mycobacterium tuberculosis/enzimologia , Aciltransferases/química , Ativação Enzimática/fisiologia , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Lipídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
7.
Cell Chem Biol ; 31(3): 523-533.e4, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967559

RESUMO

The cell wall of mycobacteria plays a key role in interactions with the environment. Its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites, from ions to lipids to proteins. Identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that although chemical labeling of live cells did not exclusively label surface proteins, protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis accurately identified the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.


Assuntos
Mycobacterium tuberculosis , Sistemas de Secreção Tipo VII , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Proteômica , Antígenos de Bactérias , Parede Celular/metabolismo , Sistemas de Secreção Tipo VII/metabolismo
8.
J Biol Chem ; 287(11): 7990-8000, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22194604

RESUMO

Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Glicolipídeos/biossíntese , Mycobacterium tuberculosis/metabolismo , Fatores de Virulência/biossíntese , Acilação/fisiologia , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Inibidores Enzimáticos/farmacologia , Glicolipídeos/genética , Lactonas/farmacologia , Mycobacterium tuberculosis/genética , Orlistate , Fatores de Virulência/genética
10.
Pathogens ; 12(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38133260

RESUMO

MmpL (mycobacterial membrane protein large) proteins are integral membrane proteins that have been implicated in the biosynthesis and/or transport of mycobacterial cell wall lipids. Given the cellular location of these proteins, however, it is unclear how cell wall lipids are transported beyond the inner membrane. Moreover, given that mycobacteria grow at the poles, we also do not understand how new cell wall is added in a highly localized and presumably coordinated manner. Here, we examine the relationship between two lipid transport pathways associated with the proteins MmpL11 and LprG-Rv1410c. The lipoprotein LprG has been shown to interact with proteins involved in cell wall processes including MmpL11, which is required in biofilms for the surface localization of certain lipids. Here we report that deletion of mmpL11 (MSMEG_0241) or the lprG-rv1410c operon homologues MSMEG_3070-3069 in Mycobacterium smegmatis produced similar biofilm defects that were distinct from that of the previously reported mmpL11 transposon insertion mutant. Analysis of pellicle biofilms, bacterial growth, lipid profiles, and gene expression revealed that the biofilm phenotypes could not be directly explained by changes in the synthesis or localization of biofilm-related lipids or the expression of biofilm-related genes. Instead, the shared biofilm phenotype between ΔMSMEG_3070-3069 and ΔmmpL11 may be related to their modest growth defect, while the origins of the distinct mmpL11::Tn biofilm defect remain unclear. Our findings suggest that the mechanisms that drive pellicle biofilm formation in M. smegmatis are not connected to crosstalk between the LprG-Rv1410c and MmpL11 pathways and that any functional interaction between these proteins does not relate directly to their lipid transport function.

11.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034674

RESUMO

The cell wall of mycobacteria plays a key role in interactions with the environment and its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites from ions to lipids to proteins. Accurately identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis enabled the accurate identification of the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the Mtb periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.

12.
mBio ; 14(5): e0084123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787543

RESUMO

IMPORTANCE: Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the deadliest infectious diseases worldwide. Previous studies have established that synonymous recoding to introduce rare codon pairings can attenuate viral pathogens. We hypothesized that non-optimal codon pairing could be an effective strategy for attenuating gene expression to create a live vaccine for Mtb. We instead discovered that these synonymous changes enabled the transcription of functional mRNA that initiated in the middle of the open reading frame and from which many smaller protein products were expressed. To our knowledge, this is one of the first reports that synonymous recoding of a gene in any organism can create or induce intragenic transcription start sites.


Assuntos
Mycobacterium , Mutação Silenciosa , Códon , RNA Mensageiro , Mycobacterium/genética
13.
bioRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993691

RESUMO

Each genome encodes some codons more frequently than their synonyms (codon usage bias), but codons are also arranged more frequently into specific pairs (codon pair bias). Recoding viral genomes and yeast or bacterial genes with non-optimal codon pairs has been shown to decrease gene expression. Gene expression is thus importantly regulated not only by the use of particular codons but by their proper juxtaposition. We therefore hypothesized that non-optimal codon pairing could likewise attenuate Mtb genes. We explored the role of codon pair bias by recoding Mtb genes ( rpoB, mmpL3, ndh ) and assessing their expression in the closely related and tractable model organism M. smegmatis . To our surprise, recoding caused the expression of multiple smaller protein isoforms from all three genes. We confirmed that these smaller proteins were not due to protein degradation, but instead issued from new transcription initiation sites positioned within the open reading frame. New transcripts gave rise to intragenic translation initiation sites, which in turn led to the expression of smaller proteins. We next identified the nucleotide changes associated with these new sites of transcription and translation. Our results demonstrated that apparently benign, synonymous changes can drastically alter gene expression in mycobacteria. More generally, our work expands our understanding of the codon-level parameters that control translation and transcription initiation. IMPORTANCE: Mycobacterium tuberculosis ( Mtb ) is the causative agent of tuberculosis, one of the deadliest infectious diseases worldwide. Previous studies have established that synonymous recoding to introduce rare codon pairings can attenuate viral pathogens. We hypothesized that non-optimal codon pairing could be an effective strategy for attenuating gene expression to create a live vaccine for Mtb . We instead discovered that these synonymous changes enabled the transcription of functional mRNA that initiated in the middle of the open reading frame and from which many smaller protein products were expressed. To our knowledge, this is the first report that synonymous recoding of a gene in any organism can create or induce intragenic transcription start sites.

14.
Methods Enzymol ; 664: 267-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35331378

RESUMO

Proximity labeling is a technology for tagging proteins and other biomolecules in living cells. These methods use enzymes that generate reactive species whose properties afford high spatial resolution for the localization of proteins to subcellular compartments and the identification of endogenous interaction partners. Here we present the adaptation of the engineered peroxidase APEX2 to proximity labeling in mycobacteria, including the human pathogen Mycobacterium tuberculosis. APEX2 is uniquely suited for general use in bacteria because unlike other proximity labeling enzymes, it does not depend on metabolites like ATP that are found in the cytoplasm, but are absent from the bacterial periplasm. Importantly, we found that in slow-growing mycobacteria like M. tuberculosis, codon usage optimization is required for APEX2 export into the periplasm via fusion to an N-terminal secretion signal. APEX2 expressed from codon-optimized genes affords robust, compartment-specific protein labeling in the cytoplasm and the periplasm of both fast- and slow-growing species. Here we detail these updated constructs and provide an optimized protocol for APEX2-mediated protein labeling in mycobacteria. We expect this approach to be broadly useful for determining the localization of specific proteins, cataloging subcellular proteomes, and identifying interaction partners of 'bait' proteins expressed as fusions to APEX2.


Assuntos
Mycobacterium , Peroxidase , Corantes , Citoplasma/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , Mycobacterium/genética , Mycobacterium/metabolismo , Proteoma/metabolismo
15.
Cell Chem Biol ; 29(5): 883-896.e5, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34599873

RESUMO

The identification and validation of a small molecule's targets is a major bottleneck in the discovery process for tuberculosis antibiotics. Activity-based protein profiling (ABPP) is an efficient tool for determining a small molecule's targets within complex proteomes. However, how target inhibition relates to biological activity is often left unexplored. Here, we study the effects of 1,2,3-triazole ureas on Mycobacterium tuberculosis (Mtb). After screening ∼200 compounds, we focus on 4 compounds that form a structure-activity series. The compound with negligible activity reveals targets, the inhibition of which is functionally less relevant for Mtb growth and viability, an aspect not addressed in other ABPP studies. Biochemistry, computational docking, and morphological analysis confirms that active compounds preferentially inhibit serine hydrolases with cell wall and lipid metabolism functions and that disruption of the cell wall underlies biological activity. Our findings show that ABPP identifies the targets most likely relevant to a compound's antibacterial activity.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Parede Celular , Humanos , Proteoma
16.
Curr Opin Chem Biol ; 65: 145-153, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34600165

RESUMO

Exploring the lipids of bacteria presents a predicament that may not be broadly recognized in a field dominated by the biology and biochemistry of eukaryotic - and especially, mammalian - lipids. Bacteria make multifarious metabolites that contain fatty acyl chains of unusual length and unsaturation attached to assorted headgroups, including sugars and fatty alcohols. Lipid profiling approaches developed for eukaryotic lipids often fail to detect, resolve, or identify bacterial lipids due to their wide range of polarities (including very hydrophobic species) and diverse positional and stereochemical variations. Global lipid profiling, or lipidomics, of bacteria has thus developed as a separate mission with methodological and scientific considerations tailored to the biology of these organisms. In this review, we summarize findings primarily from the last three years that exemplify recent advances and continuing challenges to learning about bacterial lipids.


Assuntos
Bactérias , Lipidômica , Lipídeos , Espectrometria de Massas , Bactérias/química , Lipídeos/análise , Lipídeos/química , Espectrometria de Massas/métodos
17.
Appl Environ Microbiol ; 76(23): 7881-4, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935124

RESUMO

We developed a series of ligand-inducible riboswitches that control gene expression in diverse species of Gram-negative and Gram-positive bacteria, including human pathogens that have few or no previously reported inducible expression systems. We anticipate that these riboswitches will be useful tools for genetic studies in a wide range of bacteria.


Assuntos
Bactérias/genética , Expressão Gênica , Engenharia Genética/métodos , Genética Microbiana/métodos , Riboswitch/efeitos dos fármacos
18.
ACS Infect Dis ; 6(4): 637-648, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32053347

RESUMO

Assembly of the bacterial cell wall requires not only the biosynthesis of cell wall components but also the transport of these metabolites to the cell exterior for assembly into polymers and membranes required for bacterial viability and virulence. LprG is a cell wall protein that is required for the virulence of Mycobacterium tuberculosis and is associated with lipid transport to the outer lipid layer or mycomembrane. Motivated by available cocrystal structures of LprG with lipids, we searched for potential inhibitors of LprG by performing a computational docking screen of ∼250 000 commercially available small molecules. We identified several structurally related dimethylaminophenyl hydrazides that bind to LprG with moderate micromolar affinity and inhibit mycobacterial growth in a LprG-dependent manner. We found that mutation of F123 within the binding cavity of LprG conferred resistance to one of the most potent compounds. These findings provide evidence that the large hydrophobic substrate-binding pocket of LprG can be realistically and specifically targeted by small-molecule inhibitors.


Assuntos
Aminofenóis/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Hidrazinas/farmacologia , Metabolismo dos Lipídeos , Mycobacterium tuberculosis/efeitos dos fármacos , Aminofenóis/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Hidrazinas/química , Viabilidade Microbiana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mutação , Mycobacterium tuberculosis/genética , Ligação Proteica
19.
ACS Infect Dis ; 4(6): 918-925, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29708735

RESUMO

The study of the bacterial periplasm requires techniques with sufficient spatial resolution and sensitivity to resolve the components and processes within this subcellular compartment. Peroxidase-mediated biotinylation has enabled targeted labeling of proteins within subcellular compartments of mammalian cells. We investigated whether this methodology could be applied to the bacterial periplasm. In this study, we demonstrated that peroxidase-mediated biotinylation can be performed in mycobacteria and Escherichia coli. To eliminate detection artifacts from natively biotinylated mycobacterial proteins, we validated two alternative labeling substrates, tyramide azide and tyramide alkyne, which enable biotin-independent detection of labeled proteins. We also targeted peroxidase expression to the periplasm, resulting in compartment-specific labeling of periplasmic versus cytoplasmic proteins in mycobacteria. Finally, we showed that this method can be used to validate protein relocalization to the cytoplasm upon removal of a secretion signal. This novel application of peroxidase-mediated protein labeling will advance efforts to characterize the role of the periplasm in bacterial physiology and pathogenesis.


Assuntos
Proteínas de Bactérias/química , Biotina , Proteínas Periplásmicas/química , Peroxidase , Coloração e Rotulagem , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotina/química , Biotinilação , Química Click , Citoplasma , Escherichia coli/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Peroxidase/química , Peroxidase/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
20.
ACS Infect Dis ; 3(5): 336-348, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28276676

RESUMO

Outer membrane lipids in pathogenic mycobacteria are important for virulence and survival. Although the biosynthesis of these lipids has been extensively studied, mechanisms responsible for their assembly in the outer membrane are not understood. In the study of Gram-negative outer membrane assembly, protein-protein interactions define transport mechanisms, but analogous interactions have not been explored in mycobacteria. Here we identified interactions with the lipid transport protein LprG. Using site-specific photo-cross-linking in live mycobacteria, we mapped three major interaction interfaces within LprG. We went on to identify proteins that cross-link at the entrance to the lipid binding pocket, an area likely relevant to LprG transport function. We verified LprG site-specific interactions with two hits, the conserved lipoproteins LppK and LppI. We further showed that LprG interacts physically and functionally with the mycolyltransferase Ag85A, as loss of either protein leads to similar defects in cell growth and mycolylation. Overall, our results support a model in which protein interactions coordinate multiple pathways in outer membrane biogenesis and connect lipid biosynthesis to transport.


Assuntos
Aciltransferases/química , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Motivos de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Clonagem Molecular , Expressão Gênica , Cinética , Lipídeos/química , Modelos Moleculares , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA