Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Pharmacol Exp Ther ; 389(1): 51-60, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296645

RESUMO

Glioblastoma (GBM) is the most frequently diagnosed primary central nervous system tumor in adults. Despite the standard of care therapy, which includes surgical resection, temozolomide chemotherapy, radiation and the newly added tumor-treating fields, median survival remains only ∼20 months. Unfortunately, GBM has a ∼100% recurrence rate, but after recurrence there are no Food and Drug Administration-approved therapies to limit tumor growth and enhance patient survival, as these tumors are resistant to temozolomide (TMZ). Recently, our laboratory reported that lucanthone slows GBM by inhibiting autophagic flux through lysosome targeting and decreases the number of Olig2+ glioma stem-like cells (GSC) in vitro and in vivo. We now additionally report that lucanthone efficiently abates stemness in patient-derived GSC and reduces tumor microtube formation in GSC, an emerging hallmark of treatment resistance in GBM. In glioma tumors derived from cells with acquired resistance to TMZ, lucanthone retains the ability to perturb tumor growth, inhibits autophagy by targeting lysosomes, and reduces Olig2 positivity. We also find that lucanthone may act as an inhibitor of palmitoyl protein thioesterase 1. Our results suggest that lucanthone may function as a potential treatment option for GBM tumors that are not amenable to TMZ treatment. SIGNIFICANCE STATEMENT: We report that the antischistosome agent lucanthone impedes tumor growth in a preclinical model of temozolomide-resistant glioblastoma and reduces the numbers of stem-like glioma cells. In addition, it acts as an autophagy inhibitor, and its mechanism of action may be via inhibition of palmitoyl protein thioesterase 1. As there are no defined therapies approved for recurrent, TMZ-resistant tumor, lucanthone could emerge as a treatment for glioblastoma tumors that may not be amenable to TMZ both in the newly diagnosed and recurrent settings.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Lucantona , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Lucantona/farmacologia , Lucantona/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteínas de Membrana , Tioléster Hidrolases
2.
Nat Chem Biol ; 18(11): 1184-1195, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36163383

RESUMO

Although cyclophilins are attractive targets for probing biology and therapeutic intervention, no subtype-selective cyclophilin inhibitors have been described. We discovered novel cyclophilin inhibitors from the in vitro selection of a DNA-templated library of 256,000 drug-like macrocycles for cyclophilin D (CypD) affinity. Iterated macrocycle engineering guided by ten X-ray co-crystal structures yielded potent and selective inhibitors (half maximal inhibitory concentration (IC50) = 10 nM) that bind the active site of CypD and also make novel interactions with non-conserved residues in the S2 pocket, an adjacent exo-site. The resulting macrocycles inhibit CypD activity with 21- to >10,000-fold selectivity over other cyclophilins and inhibit mitochondrial permeability transition pore opening in isolated mitochondria. We further exploited S2 pocket interactions to develop the first cyclophilin E (CypE)-selective inhibitor, which forms a reversible covalent bond with a CypE S2 pocket lysine, and exhibits 30- to >4,000-fold selectivity over other cyclophilins. These findings reveal a strategy to generate isoform-selective small-molecule cyclophilin modulators, advancing their suitability as targets for biological investigation and therapeutic development.


Assuntos
Ciclofilinas , Poro de Transição de Permeabilidade Mitocondrial , Ciclofilinas/química , Ciclofilinas/metabolismo , Peptidil-Prolil Isomerase F , Lisina , DNA
3.
Cell ; 136(6): 994-6, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19303841

RESUMO

The scaffold proteins of signaling pathways are thought to act as passive tethering devices bringing together catalytic components of signaling cascades. Good et al. (2009) now reveal that in the budding yeast the scaffold protein Ste5 acts as an allosteric activator of the mitogen-activated protein kinase Fus3, rendering it competent to be a kinase substrate for signal transmission.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Ativação Enzimática , Sistema de Sinalização das MAP Quinases
4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34750265

RESUMO

Protein kinase inhibitors are potent anticancer therapeutics. For example, the Bcr-Abl kinase inhibitor imatinib decreases mortality for chronic myeloid leukemia by 80%, but 22 to 41% of patients acquire resistance to imatinib. About 70% of relapsed patients harbor mutations in the Bcr-Abl kinase domain, where more than a hundred different mutations have been identified. Some mutations are located near the imatinib-binding site and cause resistance through altered interactions with the drug. However, many resistance mutations are located far from the drug-binding site, and it remains unclear how these mutations confer resistance. Additionally, earlier studies on small sets of patient-derived imatinib resistance mutations indicated that some of these mutant proteins were in fact sensitive to imatinib in cellular and biochemical studies. Here, we surveyed the resistance of 94 patient-derived Abl kinase domain mutations annotated as disease relevant or resistance causing using an engagement assay in live cells. We found that only two-thirds of mutations weaken imatinib affinity by more than twofold compared to Abl wild type. Surprisingly, one-third of mutations in the Abl kinase domain still remain sensitive to imatinib and bind with similar or higher affinity than wild type. Intriguingly, we identified three clinical Abl mutations that bind imatinib with wild type-like affinity but dissociate from imatinib considerably faster. Given the relevance of residence time for drug efficacy, mutations that alter binding kinetics could cause resistance in the nonequilibrium environment of the body where drug export and clearance play critical roles.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Mesilato de Imatinib/farmacologia , Mutação/genética , Linhagem Celular , Células HEK293 , Humanos , Cinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/farmacologia
5.
Biochemistry ; 62(6): 1124-1137, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36854171

RESUMO

Tyrosine kinases (TKs) play essential roles in signaling processes that regulate cell survival, migration, and proliferation. Dysregulation of tyrosine kinases underlies many disorders, including cancer, cardiovascular and developmental diseases, as well as pathologies of the immune system. Ack1 and Brk are nonreceptor tyrosine kinases (NRTKs) best known for their roles in cancer. Here, we have biochemically characterized novel Ack1 and Brk mutations identified in patients with systemic lupus erythematosus (SLE). These mutations are the first SLE-linked polymorphisms found among NRTKs. We show that two of the mutants are catalytically inactive, while the other three have reduced activity. To understand the structural changes associated with the loss-of-function phenotype, we solved the crystal structure of one of the Ack1 kinase mutants, K161Q. Furthermore, two of the mutated residues (Ack1 A156 and K161) critical for catalytic activity are highly conserved among other TKs, and their substitution in other members of the kinase family could have implications in cancer. In contrast to canonical gain-of-function mutations in TKs observed in many cancers, we report loss-of-function mutations in Ack1 and Brk, highlighting the complexity of TK involvement in human diseases.


Assuntos
Neoplasias , Humanos , Mutação , Fosforilação , Tirosina
6.
J Biol Chem ; 298(8): 102268, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35850305

RESUMO

Elevated DNA replication stress causes instability of the DNA replication fork and increased DNA mutations, which underlies tumorigenesis. The DNA replication stress regulator silencing-defective 2 (SDE2) is known to bind to TIMELESS (TIM), a protein of the fork protection complex, and enhances its stability, thereby supporting replisome activity at DNA replication forks. However, the DNA-binding activity of SDE2 is not well defined. Here, we structurally and functionally characterize a new conserved DNA-binding motif related to the SAP (SAF-A/B, Acinus, PIAS) domain in human SDE2 and establish its preference for ssDNA. Our NMR solution structure of the SDE2SAP domain reveals a helix-extended loop-helix core with the helices aligned parallel to each other, consistent with known canonical SAP folds. Notably, we have shown that the DNA interaction of this SAP domain extends beyond the core SAP domain and is augmented by two lysine residues in the C-terminal tail, which is uniquely positioned adjacent to the SAP motif and conserved in the pre-mRNA splicing factor SF3A3. Furthermore, we found that mutation in the SAP domain and extended C terminus not only disrupts ssDNA binding but also impairs TIM localization at replication forks, thus inhibiting efficient fork progression. Taken together, our results establish SDE2SAP as an essential element for SDE2 to exert its role in preserving replication fork integrity via fork protection complex regulation and highlight the structural diversity of the DNA-protein interactions achieved by a specialized DNA-binding motif.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Domínios Proteicos
7.
Biochem Soc Trans ; 51(1): 373-385, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36794774

RESUMO

The human genome encodes more than 500 different protein kinases: signaling enzymes with tightly regulated activity. Enzymatic activity within the conserved kinase domain is influenced by numerous regulatory inputs including the binding of regulatory domains, substrates, and the effect of post-translational modifications such as autophosphorylation. Integration of these diverse inputs occurs via allosteric sites that relate signals via networks of amino acid residues to the active site and ensures controlled phosphorylation of kinase substrates. Here, we review mechanisms of allosteric regulation of protein kinases and recent advances in the field.


Assuntos
Proteínas Quinases , Transdução de Sinais , Humanos , Proteínas Quinases/metabolismo , Regulação Alostérica , Fosforilação , Sítio Alostérico
8.
Cell ; 134(1): 124-34, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614016

RESUMO

The catalytic activity of the Src family of tyrosine kinases is suppressed by phosphorylation on a tyrosine residue located near the C terminus (Tyr 527 in c-Src), which is catalyzed by C-terminal Src Kinase (Csk). Given the promiscuity of most tyrosine kinases, it is remarkable that the C-terminal tails of the Src family kinases are the only known targets of Csk. We have determined the crystal structure of a complex between the kinase domains of Csk and c-Src at 2.9 A resolution, revealing that interactions between these kinases position the C-terminal tail of c-Src at the edge of the active site of Csk. Csk cannot phosphorylate substrates that lack this docking mechanism because the conventional substrate binding site used by most tyrosine kinases to recognize substrates is destabilized in Csk by a deletion in the activation loop.


Assuntos
Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Animais , Bactérias/enzimologia , Sítios de Ligação , Proteína Tirosina Quinase CSK , Galinhas , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície , Quinases da Família src
9.
PLoS Genet ; 15(2): e1007983, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30789902

RESUMO

The Fanconi Anemia (FA) pathway is a multi-step DNA repair process at stalled replication forks in response to DNA interstrand cross-links (ICLs). Pathological mutation of key FA genes leads to the inherited disorder FA, characterized by progressive bone marrow failure and cancer predisposition. The study of FA is of great importance not only to children suffering from FA but also as a model to study cancer pathogenesis in light of genome instability among the general population. FANCD2 monoubiquitination by the FA core complex is an essential gateway that connects upstream DNA damage signaling to enzymatic steps of repair. FAAP20 is a key component of the FA core complex, and regulated proteolysis of FAAP20 mediated by the ubiquitin E3 ligase SCFFBW7 is critical for maintaining the integrity of the FA complex and FA pathway signaling. However, upstream regulatory mechanisms that govern this signaling remain unclear. Here, we show that PIN1, a phosphorylation-specific prolyl isomerase, regulates the integrity of the FA core complex, thus FA pathway activation. We demonstrate that PIN1 catalyzes cis-trans isomerization of the FAAP20 pSer48-Pro49 motif and promotes FAAP20 stability. Mechanistically, PIN1-induced conformational change of FAAP20 enhances its interaction with the PP2A phosphatase to counteract SCFFBW7-dependent proteolytic signaling at the phosphorylated degron motif. Accordingly, PIN1 deficiency impairs FANCD2 activation and the DNA ICL repair process. Together, our study establishes PIN1-dependent prolyl isomerization as a new regulator of the FA pathway and genomic integrity.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Proteína Fosfatase 2/metabolismo , Linhagem Celular , Reparo do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HEK293 , Humanos , Isomerismo , Mutação , Proteólise , Transdução de Sinais
10.
Angew Chem Int Ed Engl ; 61(28): e202200983, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35486370

RESUMO

Understanding how mutations render a drug ineffective is a problem of immense relevance. Often the mechanism through which mutations cause drug resistance can be explained purely through thermodynamics. However, the more perplexing situation is when two proteins have the same drug binding affinities but different residence times. In this work, we demonstrate how all-atom molecular dynamics simulations using recent developments grounded in statistical mechanics can provide a detailed mechanistic rationale for such variances. We discover dissociation mechanisms for the anti-cancer drug Imatinib (Gleevec) against wild-type and the N368S mutant of Abl kinase. We show how this point mutation triggers far-reaching changes in the protein's flexibility and leads to a different, much faster, drug dissociation pathway. We believe that this work marks an efficient and scalable approach to obtain mechanistic insight into resistance mutations in biomolecular receptors that are hard to explain using a structural perspective.


Assuntos
Benzamidas , Piperazinas , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/metabolismo , Mesilato de Imatinib/farmacologia , Mutação , Piperazinas/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química
11.
Nat Chem Biol ; 15(6): 565-574, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086331

RESUMO

Enzymes that act on multiple substrates are common in biology but pose unique challenges as therapeutic targets. The metalloprotease insulin-degrading enzyme (IDE) modulates blood glucose levels by cleaving insulin, a hormone that promotes glucose clearance. However, IDE also degrades glucagon, a hormone that elevates glucose levels and opposes the effect of insulin. IDE inhibitors to treat diabetes, therefore, should prevent IDE-mediated insulin degradation, but not glucagon degradation, in contrast with traditional modes of enzyme inhibition. Using a high-throughput screen for non-active-site ligands, we discovered potent and highly specific small-molecule inhibitors that alter IDE's substrate selectivity. X-ray co-crystal structures, including an IDE-ligand-glucagon ternary complex, revealed substrate-dependent interactions that enable these inhibitors to potently block insulin binding while allowing glucagon cleavage, even at saturating inhibitor concentrations. These findings suggest a path for developing IDE-targeting therapeutics, and offer a blueprint for modulating other enzymes in a substrate-selective manner to unlock their therapeutic potential.


Assuntos
Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Metaloproteases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores Enzimáticos/química , Humanos , Metaloproteases/metabolismo , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Especificidade por Substrato
12.
Nature ; 511(7507): 94-8, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24847884

RESUMO

Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide(-/-) mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE's physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation.


Assuntos
Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Insulisina/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Compostos Macrocíclicos/farmacologia , Animais , Sítios de Ligação , Glicemia/metabolismo , Domínio Catalítico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Modelos Animais de Doenças , Esvaziamento Gástrico/efeitos dos fármacos , Predisposição Genética para Doença , Teste de Tolerância a Glucose , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Insulisina/química , Insulisina/genética , Insulisina/metabolismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Magreza/tratamento farmacológico , Magreza/metabolismo
13.
Mol Cell ; 42(1): 9-22, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21474065

RESUMO

In contrast to the active conformations of protein kinases, which are essentially the same for all kinases, inactive kinase conformations are structurally diverse. Some inactive conformations are, however, observed repeatedly in different kinases, perhaps reflecting an important role in catalysis. In this review, we analyze one of these recurring conformations, first identified in CDK and Src kinases, which turned out to be central to understanding of how kinase domain of the EGF receptor is activated. This mechanism, which involves the stabilization of the active conformation of an α helix, has features in common with mechanisms operative in several other kinases.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Regulação Alostérica , Catálise , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Dimerização , Ativação Enzimática , Estabilidade Enzimática , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Quinases da Família src/química , Quinases da Família src/metabolismo
14.
Biochemistry ; 57(31): 4675-4689, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30004690

RESUMO

Kinases play a critical role in cellular signaling and are dysregulated in a number of diseases, such as cancer, diabetes, and neurodegeneration. Therapeutics targeting kinases currently account for roughly 50% of cancer drug discovery efforts. The ability to explore human kinase biochemistry and biophysics in the laboratory is essential to designing selective inhibitors and studying drug resistance. Bacterial expression systems are superior to insect or mammalian cells in terms of simplicity and cost effectiveness but have historically struggled with human kinase expression. Following the discovery that phosphatase coexpression produced high yields of Src and Abl kinase domains in bacteria, we have generated a library of 52 His-tagged human kinase domain constructs that express above 2 µg/mL of culture in an automated bacterial expression system utilizing phosphatase coexpression (YopH for Tyr kinases and lambda for Ser/Thr kinases). Here, we report a structural bioinformatics approach to identifying kinase domain constructs previously expressed in bacteria and likely to express well in our protocol, experiments demonstrating our simple construct selection strategy selects constructs with good expression yields in a test of 84 potential kinase domain boundaries for Abl, and yields from a high-throughput expression screen of 96 human kinase constructs. Using a fluorescence-based thermostability assay and a fluorescent ATP-competitive inhibitor, we show that the highest-expressing kinases are folded and have well-formed ATP binding sites. We also demonstrate that these constructs can enable characterization of clinical mutations by expressing a panel of 48 Src and 46 Abl mutations. The wild-type kinase construct library is available publicly via Addgene.


Assuntos
Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Humanos , Fosforilação , Estrutura Secundária de Proteína , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/metabolismo
15.
Chemistry ; 23(8): 1891-1900, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-27897348

RESUMO

Biliverdin reductase IXß (BLVRB) is a crucial enzyme in heme metabolism. Recent studies in humans have identified a loss-of-function mutation (Ser111Leu) that unmasks a fundamentally important role in hematopoiesis. We have undertaken experimental and thermodynamic modeling studies to provide further insight into the role of the cofactor in substrate accessibility and protein folding properties regulating BLVRB catalytic mechanisms. Site-directed mutagenesis with molecular dynamic (MD) simulations establish the critical role of NAD(P)H-dependent conformational changes on substrate accessibility by forming the "hydrophobic pocket", along with identification of a single key residue (Arg35) modulating NADPH/NADH selectivity. Loop80 and Loop120 block the hydrophobic substrate binding pocket in apo BLVRB (open), whereas movement of these structures after cofactor binding results in the "closed" (catalytically active) conformation. Both enzymatic activity and thermodynamic stability are affected by mutation(s) involving Ser111, which is located in the core of the BLVRB active site. This work 1) elucidates the crucial role of Ser111 in enzymatic catalysis and thermodynamic stability by active site hydrogen bond network; 2) defines a dynamic model for apo BLVRB extending beyond the crystal structure of the binary BLVRB/NADP+ complex; 3) provides a structural basis for the "encounter" and "equilibrium" states of the binary complex, which are regulated by NAD(P)H.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Serina/química , Animais , Sítios de Ligação , Domínio Catalítico , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , NAD/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Estabilidade Proteica , Serina/metabolismo , Especificidade por Substrato , Termodinâmica
16.
Nature ; 472(7342): 238-42, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21441902

RESUMO

Superfamily 1 and superfamily 2 RNA helicases are ubiquitous messenger-RNA-protein complex (mRNP) remodelling enzymes that have critical roles in all aspects of RNA metabolism. The superfamily 2 DEAD-box ATPase Dbp5 (human DDX19) functions in mRNA export and is thought to remodel mRNPs at the nuclear pore complex (NPC). Dbp5 is localized to the NPC via an interaction with Nup159 (NUP214 in vertebrates) and is locally activated there by Gle1 together with the small-molecule inositol hexakisphosphate (InsP(6)). Local activation of Dbp5 at the NPC by Gle1 is essential for mRNA export in vivo; however, the mechanistic role of Dbp5 in mRNP export is poorly understood and it is not known how Gle1(InsP6) and Nup159 regulate the activity of Dbp5. Here we report, from yeast, structures of Dbp5 in complex with Gle1(InsP6), Nup159/Gle1(InsP6) and RNA. These structures reveal that InsP(6) functions as a small-molecule tether for the Gle1-Dbp5 interaction. Surprisingly, the Gle1(InsP6)-Dbp5 complex is structurally similar to another DEAD-box ATPase complex essential for translation initiation, eIF4G-eIF4A, and we demonstrate that Gle1(InsP6) and eIF4G both activate their DEAD-box partner by stimulating RNA release. Furthermore, Gle1(InsP6) relieves Dbp5 autoregulation and cooperates with Nup159 in stabilizing an open Dbp5 intermediate that precludes RNA binding. These findings explain how Gle1(InsP6), Nup159 and Dbp5 collaborate in mRNA export and provide a general mechanism for DEAD-box ATPase regulation by Gle1/eIF4G-like activators.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Helicases DEAD-box/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ácido Fítico/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , RNA Helicases DEAD-box/química , Ativação Enzimática , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/metabolismo , Modelos Biológicos , Modelos Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Conformação Proteica , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Blood ; 123(7): 1059-68, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24381227

RESUMO

Along with the most common mutation, JAK2V617F, several other acquired JAK2 mutations have now been shown to contribute to the pathogenesis of myeloproliferative neoplasms (MPNs). However, here we describe for the first time a germline mutation that leads to familial thrombocytosis that involves a residue other than Val617. The novel mutation JAK2R564Q, identified in a family with autosomal dominant essential thrombocythemia, increased cell growth resulting from suppression of apoptosis in Ba/F3-MPL cells. Although JAK2R564Q and JAK2V617F have similar levels of increased kinase activity, the growth-promoting effects of JAK2R564Q are much milder than those of JAK2V617F because of at least 2 counterregulatory mechanisms. Whereas JAK2V617F can escape regulation by the suppressor of cytokine signaling 3 and p27/Kip1, JAK2R564Q-expressing cells cannot. Moreover, JAK2R564Q-expressing cells are much more sensitive to the JAK inhibitor, ruxolitinib, than JAK2V617F-expressers, suggesting that lower doses of this drug may be effective in treating patients with MPNs associated with alternative JAK2 mutations, allowing many undesirable adverse effects to be avoided. This work provides a greater understanding of the cellular effects of a non-JAK2V617F, MPN-associated JAK2 mutation; provides insights into new treatment strategies for such patients; and describes the first case of familial thrombosis caused by a JAK2 residue other than Val617.


Assuntos
Mutação em Linhagem Germinativa , Janus Quinase 2/genética , Trombocitemia Essencial/genética , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/genética , Sequência de Bases , Criança , Feminino , Ácido Glutâmico/genética , Humanos , Janus Quinase 2/química , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Linhagem
18.
Nat Chem Biol ; 8(4): 366-74, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22344177

RESUMO

Protein kinases are attractive therapeutic targets, but their high sequence and structural conservation complicates the development of specific inhibitors. We recently identified, in a DNA-templated macrocycle library, inhibitors with unusually high selectivity among Src-family kinases. Starting from these compounds, we developed and characterized in molecular detail potent macrocyclic inhibitors of Src kinase and its cancer-associated 'gatekeeper' mutant. We solved two cocrystal structures of macrocycles bound to Src kinase. These structures reveal the molecular basis of the combined ATP- and substrate peptide-competitive inhibitory mechanism and the remarkable kinase specificity of the compounds. The most potent compounds inhibit Src activity in cultured mammalian cells. Our work establishes that macrocycles can inhibit protein kinases through a bisubstrate-competitive mechanism with high potency and exceptional specificity, reveals the precise molecular basis for their desirable properties and provides new insights into the development of Src-specific inhibitors with potential therapeutic relevance.


Assuntos
Compostos Macrocíclicos/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Células 3T3 , Animais , Ligação Competitiva , Cristalografia por Raios X , DNA/química , Humanos , Camundongos , Estrutura Molecular , Mutação , Conformação Proteica , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-hck/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
19.
Nat Chem Biol ; 8(12): 982-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23086298

RESUMO

Under endoplasmic reticulum stress, unfolded protein accumulation leads to activation of the endoplasmic reticulum transmembrane kinase/endoRNase (RNase) IRE1α. IRE1α oligomerizes, autophosphorylates and initiates splicing of XBP1 mRNA, thus triggering the unfolded protein response (UPR). Here we show that IRE1α's kinase-controlled RNase can be regulated in two distinct modes with kinase inhibitors: one class of ligands occupies IRE1α's kinase ATP-binding site to activate RNase-mediated XBP1 mRNA splicing even without upstream endoplasmic reticulum stress, whereas a second class can inhibit the RNase through the same ATP-binding site, even under endoplasmic reticulum stress. Thus, alternative kinase conformations stabilized by distinct classes of ATP-competitive inhibitors can cause allosteric switching of IRE1α's RNase--either on or off. As dysregulation of the UPR has been implicated in a variety of cell degenerative and neoplastic disorders, small-molecule control over IRE1α should advance efforts to understand the UPR's role in pathophysiology and to develop drugs for endoplasmic reticulum stress-related diseases.


Assuntos
Endorribonucleases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal , Catálise , Células Cultivadas , Reagentes de Ligações Cruzadas , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Conformação Molecular , Mutação/genética , Mutação/fisiologia , Fosforilação , Splicing de RNA/efeitos dos fármacos , Fatores de Transcrição de Fator Regulador X , Ribonucleases/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína 1 de Ligação a X-Box
20.
Cell Chem Biol ; 31(2): 192-194, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364776

RESUMO

In this issue of Cell Chemical Biology, Chakraborty et al.1 employ a deep mutational screening analysis of 3,500 single point mutations in every residue in Src kinase's catalytic domain to determine which residues are critical for conferring ATP-competitive inhibitor resistance. They identify a dynamically controlled resistance site.


Assuntos
Mutação Puntual , Domínio Catalítico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA