Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nat Rev Genet ; 25(2): 142-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37749210

RESUMO

Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.


Assuntos
Farmacorresistência Bacteriana , Saúde Única , Animais , Humanos , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Genômica , Animais Selvagens
2.
Appl Environ Microbiol ; 90(3): e0129223, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289130

RESUMO

Fundamental to effective Legionnaires' disease outbreak control is the ability to rapidly identify the environmental source(s) of the causative agent, Legionella pneumophila. Genomics has revolutionized pathogen surveillance, but L. pneumophila has a complex ecology and population structure that can limit source inference based on standard core genome phylogenetics. Here, we present a powerful machine learning approach that assigns the geographical source of Legionnaires' disease outbreaks more accurately than current core genome comparisons. Models were developed upon 534 L. pneumophila genome sequences, including 149 genomes linked to 20 previously reported Legionnaires' disease outbreaks through detailed case investigations. Our classification models were developed in a cross-validation framework using only environmental L. pneumophila genomes. Assignments of clinical isolate geographic origins demonstrated high predictive sensitivity and specificity of the models, with no false positives or false negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak polyclonal population structure. Analysis of the same 534-genome panel with a conventional phylogenomic tree and a core genome multi-locus sequence type allelic distance-based classification approach revealed that our machine learning method had the highest overall classification performance-agreement with epidemiological information. Our multivariate statistical learning approach maximizes the use of genomic variation data and is thus well-suited for supporting Legionnaires' disease outbreak investigations.IMPORTANCEIdentifying the sources of Legionnaires' disease outbreaks is crucial for effective control. Current genomic methods, while useful, often fall short due to the complex ecology and population structure of Legionella pneumophila, the causative agent. Our study introduces a high-performing machine learning approach for more accurate geographical source attribution of Legionnaires' disease outbreaks. Developed using cross-validation on environmental L. pneumophila genomes, our models demonstrate excellent predictive sensitivity and specificity. Importantly, this new approach outperforms traditional methods like phylogenomic trees and core genome multi-locus sequence typing, proving more efficient at leveraging genomic variation data to infer outbreak sources. Our machine learning algorithms, harnessing both core and accessory genomic variation, offer significant promise in public health settings. By enabling rapid and precise source identification in Legionnaires' disease outbreaks, such approaches have the potential to expedite intervention efforts and curtail disease transmission.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Legionella pneumophila/genética , Doença dos Legionários/epidemiologia , Tipagem de Sequências Multilocus/métodos , Genômica/métodos , Epidemiologia Molecular/métodos , Surtos de Doenças
3.
Emerg Infect Dis ; 28(7): 1527-1530, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483111

RESUMO

Epidemiologic and genomic investigation of SARS-CoV-2 infections associated with 2 repatriation flights from India to Australia in April 2021 indicated that 4 passengers transmitted SARS-CoV-2 to >11 other passengers. Results suggest transmission despite mandatory mask use and predeparture testing. For subsequent flights, predeparture quarantine and expanded predeparture testing were implemented.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Genoma Viral , Genômica , Humanos , Quarentena , SARS-CoV-2/genética
4.
Proc Natl Acad Sci U S A ; 116(40): 20135-20140, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527262

RESUMO

Staphylococcus aureus small-colony variants (SCVs) are associated with unusually chronic and persistent infections despite active antibiotic treatment. The molecular basis for this clinically important phenomenon is poorly understood, hampered by the instability of the SCV phenotype. Here we investigated the genetic basis for an unstable S. aureus SCV that arose spontaneously while studying rifampicin resistance. This SCV showed no nucleotide differences across its genome compared with a normal-colony variant (NCV) revertant, yet the SCV presented the hallmarks of S. aureus linked to persistent infection: down-regulation of virulence genes and reduced hemolysis and neutrophil chemotaxis, while exhibiting increased survival in blood and ability to invade host cells. Further genome analysis revealed chromosome structural variation uniquely associated with the SCV. These variations included an asymmetric inversion across half of the S. aureus chromosome via recombination between type I restriction modification system (T1RMS) genes, and the activation of a conserved prophage harboring the immune evasion cluster (IEC). Phenotypic reversion to the wild-type-like NCV state correlated with reversal of the chromosomal inversion (CI) and with prophage stabilization. Further analysis of 29 complete S. aureus genomes showed strong signatures of recombination between hsdMS genes, suggesting that analogous CI has repeatedly occurred during S. aureus evolution. Using qPCR and long-read amplicon deep sequencing, we detected subpopulations with T1RMS rearrangements causing CIs and prophage activation across major S. aureus lineages. Here, we have discovered a previously unrecognized and widespread mechanism of reversible genomic instability in S. aureus associated with SCV generation and persistent infections.


Assuntos
Instabilidade Cromossômica , Cromossomos Bacterianos , Fenótipo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Translocação Genética , Inversão Cromossômica , Ordem dos Genes , Genoma Bacteriano , Hemólise , Humanos , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia
5.
Clin Infect Dis ; 73(7): e1881-e1884, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32927479

RESUMO

Healthcare workers are at increased risk of occupational transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report 2 instances of healthcare workers contracting SARS-CoV-2 despite no known breach of personal protective equipment. Additional specific equipment cleaning was initiated. Viral genomic sequencing supported this transmission hypothesis and our subsequent response.


Assuntos
COVID-19 , Genômica , Humanos , Controle de Infecções , Equipamento de Proteção Individual , SARS-CoV-2
6.
Clin Infect Dis ; 73(11): e3912-e3920, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-32663248

RESUMO

BACKGROUND: Multiresistant organisms (MROs) pose a critical threat to public health. Population-based programs for control of MROs such as carbapenemase-producing Enterobacterales (CPE) have emerged and evaluation is needed. We assessed the feasibility and impact of a statewide CPE surveillance and response program deployed across Victoria, Australia (population 6.5 million). METHODS: A prospective multimodal intervention including active screening, carrier isolation, centralized case investigation, and comparative pathogen genomics was implemented. We analyzed trends in CPE incidence and clinical presentation, risk factors, and local transmission over the program's first 3 years (2016-2018). RESULTS: CPE case ascertainment increased over the study period to 1.42 cases/100 000 population, linked to increased screening without a concomitant rise in active clinical infections (0.45-0.60 infections/100 000 population, P = .640). KPC-2 infection decreased from 0.29 infections/100 000 population prior to intervention to 0.03 infections/100 000 population in 2018 (P = .003). Comprehensive case investigation identified instances of overseas community acquisition. Median time between isolate referral and genomic and epidemiological assessment for local transmission was 11 days (IQR, 9-14). Prospective surveillance identified numerous small transmission networks (median, 2; range, 1-19 cases), predominantly IMP and KPC, with median pairwise distance of 8 (IQR, 4-13) single nucleotide polymorphisms; low diversity between clusters of the same sequence type suggested genomic cluster definitions alone are insufficient for targeted response. CONCLUSIONS: We demonstrate the value of centralized CPE control programs to increase case ascertainment, resolve risk factors, and identify local transmission through prospective genomic and epidemiological surveillance; methodologies are transferable to low-prevalence settings and MROs globally.


Assuntos
Infecções por Enterobacteriaceae , Proteínas de Bactérias/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/prevenção & controle , Genômica , Humanos , Estudos Prospectivos , Vitória , beta-Lactamases/genética
7.
Antimicrob Agents Chemother ; 65(12): e0120021, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34543095

RESUMO

Typhoid fever is an invasive bacterial disease of humans that disproportionately affects low- and middle-income countries. Antimicrobial resistance (AMR) has been increasingly prevalent in recent decades in Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, limiting treatment options. In Australia, most cases of typhoid fever are imported due to travel to regions where typhoid fever is endemic. Here, all 116 isolates of S. Typhi isolated in Victoria, Australia, between 1 July 2018 and 30 June 2020, underwent whole-genome sequencing and antimicrobial susceptibility testing. Genomic data were linked to international travel data collected from routine case interviews. Travel to South Asia accounted for most cases, with 92.2% imported from seven primary countries (the top two were India, n = 87, and Pakistan, n = 12). A total of 17 S. Typhi genotypes were detected in the 2-year cohort, with 48.2% genotyped as part of global AMR lineages. Ciprofloxacin resistance was detected in two lineages, 3.3 and 4.3.1.2, all from cases with reported travel to India. Nearly all multidrug and extensively drug resistant isolates (90%) were from cases with reported travel to Pakistan in genotypes 4.3.1.1 and 4.3.1.1.P1. Extended spectrum beta-lactamases, blaCTX-M-15 and blaSHV-12, were detected in cases with travel to Pakistan and India, respectively. Linking epidemiological data with genomic studies of S. Typhi provides an opportunity to improve understanding of the emergence, spread and risk of drug-resistant S. Typhi infections and to better inform empirical treatment guidelines in returned travelers.


Assuntos
Febre Tifoide , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genômica , Humanos , Salmonella typhi/genética , Febre Tifoide/tratamento farmacológico , Febre Tifoide/epidemiologia , Vitória
8.
Emerg Infect Dis ; 26(6): 1326-1328, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213261

RESUMO

Candida auris is an emerging global healthcare-associated pathogen. During July-December 2018, four patients with C. auris were identified in Victoria, Australia, all with previous overseas hospitalization. Phylogenetic analysis revealed putative transmission between 2 patients and suspected overseas acquisition in the others. Vigilant screening of at-risk patients is required.


Assuntos
Candida , Candidíase , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida/genética , Candidíase/diagnóstico , Candidíase/tratamento farmacológico , Candidíase/epidemiologia , Instalações de Saúde , Humanos , Filogenia , Vitória
9.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33020158

RESUMO

In Australia, cases of shigellosis usually occur in returned travelers from regions of shigellosis endemicity or in men who have sex with men. Resistance to multiple antibiotics has significantly increased in Shigella sonnei isolates and represents a significant public health concern. We investigate an outbreak of multidrug-resistant S. sonnei in Victoria, Australia. We undertook whole-genome sequencing of 54 extended-spectrum-beta-lactamase (ESBL)-producing S. sonnei isolates received at the Microbiological Diagnostic Unit Public Health Laboratory between January 2019 and March 2020. The population structure and antimicrobial resistance profiles were identified by genomic analyses, with 73 previously characterized Australian S. sonnei isolates providing context. Epidemiological data, including age and sex of the shigellosis cases, were also collected. There was a significant increase in cases of ESBL S. sonnei from July 2019. Most of the ESBL S. sonnei isolates (65%) fell within a single cluster that was predominantly comprised of male cases that were characterized by the presence of the blaCTX-M-27 gene conferring resistance to extended-spectrum cephalosporins. These isolates were also multidrug resistant, including resistance to azithromycin and co-trimoxazole and reduced susceptibility to ciprofloxacin. Our data uncovered a prolonged clonal outbreak of ESBL S. sonnei infection that was likely first introduced by returned travelers and has subsequently been circulating locally in Australia. The emergence of a local outbreak of ESBL S. sonnei with a multidrug-resistant profile, including reduced susceptibility to ciprofloxacin, represents a significant public health threat.


Assuntos
Disenteria Bacilar , Minorias Sexuais e de Gênero , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Surtos de Doenças , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/epidemiologia , Homossexualidade Masculina , Humanos , Masculino , Testes de Sensibilidade Microbiana , Shigella sonnei/genética , Vitória/epidemiologia , beta-Lactamases/genética
10.
RNA ; 24(5): 704-720, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440476

RESUMO

Pasteurella multocida is a Gram-negative bacterium responsible for many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. Small RNA (sRNA) molecules are critical regulators that act by binding to specific mRNA targets, often in association with the RNA chaperone protein Hfq. In this study, transcriptomic analysis of the P. multocida strain VP161 revealed a putative sRNA with high identity to GcvB from Escherichia coli and Salmonella enterica serovar Typhimurium. High-throughput quantitative liquid proteomics was used to compare the proteomes of the P. multocida VP161 wild-type strain, a gcvB mutant, and a GcvB overexpression strain. These analyses identified 46 proteins that displayed significant differential production after inactivation of gcvB, 36 of which showed increased production. Of the 36 proteins that were repressed by GcvB, 27 were predicted to be involved in amino acid biosynthesis or transport. Bioinformatic analyses of putative P. multocida GcvB target mRNAs identified a strongly conserved 10 nucleotide consensus sequence, 5'-AACACAACAT-3', with the central eight nucleotides identical to the seed binding region present within GcvB mRNA targets in E. coli and S. Typhimurium. Using a defined set of seed region mutants, together with a two-plasmid reporter system that allowed for quantification of sRNA-mRNA interactions, this sequence was confirmed to be critical for the binding of the P. multocida GcvB to the target mRNA, gltA.


Assuntos
Pasteurella multocida/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fator Proteico 1 do Hospedeiro/metabolismo , Motivos de Nucleotídeos , Pasteurella multocida/metabolismo , Transporte Proteico/genética , RNA Bacteriano/química , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , Regulon
11.
Med J Aust ; 212(10): 459-462, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32237278

RESUMO

OBJECTIVES: To describe the first isolation and sequencing of SARS-CoV-2 in Australia and rapid sharing of the isolate. SETTING: SARS-CoV-2 was isolated from a 58-year-old man from Wuhan, China who arrived in Melbourne on 19 January 2020 and was admitted to the Monash Medical Centre, Melbourne from the emergency department on 24 January 2020 with fever, cough, and progressive dyspnoea. MAJOR OUTCOMES: Clinical course and laboratory features of the first reported case of COVID-19 (the illness caused by SARS-CoV-2) in Australia; isolation, whole genome sequencing, imaging, and rapid sharing of virus from the patient. RESULTS: A nasopharyngeal swab and sputum collected when the patient presented to hospital were each positive for SARS-CoV-2 (reverse transcription polymerase chain reaction). Inoculation of Vero/hSLAM cells with material from the nasopharyngeal swab led to the isolation of SARS-CoV-2 virus in culture. Electron microscopy of the supernatant confirmed the presence of virus particles with morphology characteristic of viruses of the family Coronaviridae. Whole genome sequencing of the viral isolate and phylogenetic analysis indicated the isolate exhibited greater than 99.99% sequence identity with other publicly available SARS-CoV-2 genomes. Within 24 hours of isolation, the first Australian SARS-CoV-2 isolate was shared with local and overseas reference laboratories and major North American and European culture collections. CONCLUSIONS: The ability to rapidly identify, propagate, and internationally share our SARS-CoV-2 isolate is an important step in collaborative scientific efforts to deal effectively with this international public health emergency by developing better diagnostic procedures, vaccine candidates, and antiviral agents.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Disseminação de Informação/métodos , Isolamento de Pacientes/métodos , Pneumonia Viral/genética , Austrália , COVID-19 , Infecções por Coronavirus/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico , SARS-CoV-2 , Sequenciamento Completo do Genoma
12.
Clin Infect Dis ; 69(9): 1535-1544, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30615105

RESUMO

BACKGROUND: In urban Australia, the burden of shigellosis is either in returning travelers from shigellosis-endemic regions or in men who have sex with men (MSM). Here, we combine genomic data with comprehensive epidemiological data on sexual exposure and travel to describe the spread of multidrug-resistant Shigella lineages. METHODS: A population-level study of all cultured Shigella isolates in the state of Victoria, Australia, was undertaken from 1 January 2016 through 31 March 2018. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatic analyses of 545 Shigella isolates were performed at the Microbiological Diagnostic Unit Public Health Laboratory. Risk factor data on travel and sexual exposure were collected through enhanced surveillance forms or by interviews. RESULTS: Rates of antimicrobial resistance were high, with 17.6% (95/541) and 50.6% (274/541) resistance to ciprofloxacin and azithromycin, respectively. There were strong associations between antimicrobial resistance, phylogeny, and epidemiology. Specifically, 2 major MSM-associated lineages were identified: a Shigellasonnei lineage (n = 159) and a Shigella flexneri 2a lineage (n = 105). Of concern, 147/159 (92.4%) of isolates within the S. sonnei MSM-associated lineage harbored mutations associated with reduced susceptibility to recommended oral antimicrobials: namely, azithromycin, trimethoprim-sulfamethoxazole, and ciprofloxacin. Long-read sequencing demonstrated global dissemination of multidrug-resistant plasmids across Shigella species and lineages, but predominantly associated with MSM isolates. CONCLUSIONS: Our contemporary data highlight the ongoing public health threat posed by resistant Shigella, both in Australia and globally. Urgent multidisciplinary public health measures are required to interrupt transmission and prevent infection.


Assuntos
Homossexualidade Masculina/estatística & dados numéricos , Shigella/patogenicidade , Adolescente , Adulto , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Criança , Ciprofloxacina/uso terapêutico , Biologia Computacional , Farmacorresistência Bacteriana/genética , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Mutação/genética , Plasmídeos/genética , Fatores de Risco , Infecções Sexualmente Transmissíveis/microbiologia , Infecções Sexualmente Transmissíveis/prevenção & controle , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Vitória , Sequenciamento Completo do Genoma , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-30783008

RESUMO

Staphylococcus aureus is a significant human pathogen whose evolution and adaptation have been shaped in part by mobile genetic elements (MGEs), facilitating the global spread of extensive antimicrobial resistance. However, our understanding of the evolutionary dynamics surrounding MGEs, in particular, how changes in the structure of multidrug resistance (MDR) plasmids may influence important staphylococcal phenotypes, is incomplete. Here, we undertook a population and functional genomics study of 212 methicillin-resistant S. aureus (MRSA) sequence type 239 (ST239) isolates collected over 32 years to explore the evolution of the pSK1 family of MDR plasmids, illustrating how these plasmids have coevolved with and contributed to the successful adaptation of this persistent MRSA lineage. Using complete genomes and temporal phylogenomics, we reconstructed the evolution of the pSK1 family lineage from its emergence in the late 1970s and found that multiple structural variants have arisen. Plasmid maintenance and stability were linked to IS256- and IS257-mediated chromosomal integration and disruption of the plasmid replication machinery. Overlaying genomic comparisons with phenotypic susceptibility data for gentamicin, trimethoprim, and chlorhexidine, it appeared that pSK1 has contributed to enhanced resistance in ST239 MRSA isolates through two mechanisms: (i) acquisition of plasmid-borne resistance mechanisms increasing the rates of gentamicin resistance and reduced chlorhexidine susceptibility and (ii) changes in the plasmid configuration linked with further enhancement of chlorhexidine tolerance. While the exact mechanism of enhanced tolerance remains elusive, this research has uncovered a potential evolutionary response of ST239 MRSA to biocides, one of which may contribute to the ongoing persistence and adaptation of this lineage within health care institutions.


Assuntos
Clorexidina/farmacologia , Plasmídeos/genética , Biologia Computacional , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Sequenciamento Completo do Genoma
14.
J Clin Microbiol ; 57(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315956

RESUMO

Carbapenemase-producing Enterobacterales (CPE) are being increasingly reported in Australia, and integrated clinical and genomic surveillance is critical to effectively manage this threat. We sought to systematically characterize CPE in Victoria, Australia, from 2012 to 2016. Suspected CPE were referred to the state public health laboratory in Victoria, Australia, from 2012 to 2016 and examined using phenotypic, multiplex PCR and whole-genome sequencing (WGS) methods and compared with epidemiological metadata. Carbapenemase genes were detected in 361 isolates from 291 patients (30.8% of suspected CPE isolates), mostly from urine (42.1%) or screening samples (34.8%). IMP-4 (28.0% of patients), KPC-2 (25.3%), NDM (24.1%), and OXA carbapenemases (22.0%) were most common. Klebsiella pneumoniae (48.8% of patients) and Escherichia coli (26.1%) were the dominant species. Carbapenemase-inactivation method (CIM) testing reliably detected carbapenemase-positive isolates (100% sensitivity, 96.9% specificity), identifying an additional five CPE among 159 PCR-negative isolates (IMI and SME carbapenemases). When epidemiologic investigations were performed, all pairs of patients designated "highly likely" or "possible" local transmission had ≤23 pairwise single-nucleotide polymorphisms (SNPs) by genomic transmission analysis; conversely, all patient pairs designated "highly unlikely" local transmission had ≥26 pairwise SNPs. Using this proposed threshold, possible local transmission was identified involving a further 16 patients for whom epidemiologic data were unavailable. Systematic application of genomics has uncovered the emergence of polyclonal CPE as a significant threat in Australia, providing important insights to inform local public health guidelines and interventions. Using our workflow, pairwise SNP distances between CPE isolates of ≤23 SNPs suggest local transmission.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Transmissão de Doença Infecciosa , Infecções por Enterobacteriaceae/transmissão , Técnicas de Diagnóstico Molecular/métodos , Epidemiologia Molecular/métodos , Idoso , Proteínas de Bactérias/genética , Técnicas Bacteriológicas , Enterobacteriáceas Resistentes a Carbapenêmicos/classificação , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Infecções por Enterobacteriaceae/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase Multiplex , Vitória , Sequenciamento Completo do Genoma , beta-Lactamases/genética
15.
J Antimicrob Chemother ; 74(11): 3170-3178, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424550

RESUMO

BACKGROUND: Oral azithromycin given during labour reduces carriage of bacteria responsible for neonatal sepsis, including Staphylococcus aureus. However, there is concern that this may promote drug resistance. OBJECTIVES: Here, we combine genomic and epidemiological data on S. aureus isolated from mothers and babies in a randomized intra-partum azithromycin trial (PregnAnZI) to describe bacterial population dynamics and resistance mechanisms. METHODS: Participants from both arms of the trial, who carried S. aureus in day 3 and day 28 samples post-intervention, were included. Sixty-six S. aureus isolates (from 7 mothers and 10 babies) underwent comparative genome analyses and the data were then combined with epidemiological data. Trial registration (main trial): ClinicalTrials.gov Identifier NCT01800942. RESULTS: Seven S. aureus STs were identified, with ST5 dominant (n = 40, 61.0%), followed by ST15 (n = 11, 17.0%). ST5 predominated in the placebo arm (73.0% versus 49.0%, P = 0.039) and ST15 in the azithromycin arm (27.0% versus 6.0%, P = 0.022). In azithromycin-resistant isolates, msr(A) was the main macrolide resistance gene (n = 36, 80%). Ten study participants, from both trial arms, acquired azithromycin-resistant S. aureus after initially harbouring a susceptible isolate. In nine (90%) of these cases, the acquired clone was an msr(A)-containing ST5 S. aureus. Long-read sequencing demonstrated that in ST5, msr(A) was found on an MDR plasmid. CONCLUSIONS: Our data reveal in this Gambian population the presence of a dominant clone of S. aureus harbouring plasmid-encoded azithromycin resistance, which was acquired by participants in both arms of the study. Understanding these resistance dynamics is crucial to defining the public health drug resistance impacts of azithromycin prophylaxis given during labour in Africa.


Assuntos
Antibacterianos/administração & dosagem , Azitromicina/administração & dosagem , Portador Sadio/epidemiologia , Genoma Bacteriano , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Administração Oral , Adolescente , Adulto , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Portador Sadio/microbiologia , Hibridização Genômica Comparativa , Farmacorresistência Bacteriana , Feminino , Gâmbia/epidemiologia , Humanos , Recém-Nascido , Trabalho de Parto , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Nasofaringe/microbiologia , Sepse Neonatal/microbiologia , Sepse Neonatal/prevenção & controle , Gravidez , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 113(35): 9876-81, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528665

RESUMO

Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.


Assuntos
DNA Bacteriano/genética , Transferência Genética Horizontal , Genoma Bacteriano/genética , Mycobacterium/genética , Evolução Molecular , Humanos , Mycobacterium/classificação , Mycobacterium/fisiologia , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Especificidade da Espécie , Tuberculose/microbiologia , Sequenciamento Completo do Genoma/métodos
17.
Angew Chem Int Ed Engl ; 58(12): 3996-4001, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30677204

RESUMO

The nargenicin family of antibiotics are macrolides containing a rare ether-bridged cis-decalin motif. Several of these compounds are highly active against multi-drug resistant organisms. Despite the identification of the first members of this family almost 40 years ago, the genetic basis for the production of these molecules and the enzyme responsible for formation of the oxa bridge, remain unknown. Here, the 85 kb nargenicin biosynthetic gene cluster was identified from a human pathogenic Nocardia arthritidis isolate and this locus is solely responsible for nargenicin production. Further investigation of this locus revealed a putative iron-α-ketoglutarate-dependent dioxygenase, which was found to be responsible for the formation of the ether bridge from the newly identified deoxygenated precursor, 8,13-deoxynargenicin. Uncovering the nargenicin biosynthetic locus provides a molecular basis for the rational bioengineering of these interesting antibiotic macrolides.


Assuntos
Antibacterianos/biossíntese , Éteres/química , Macrolídeos/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Dioxigenases/metabolismo , Escherichia coli/efeitos dos fármacos , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Família Multigênica , Nocardia/genética , Staphylococcus aureus/efeitos dos fármacos
18.
BMC Genomics ; 19(1): 379, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788909

RESUMO

BACKGROUND: Clostridium perfringens causes a range of diseases in animals and humans including necrotic enteritis in chickens and food poisoning and gas gangrene in humans. Necrotic enteritis is of concern in commercial chicken production due to the cost of the implementation of infection control measures and to productivity losses. This study has focused on the genomic analysis of a range of chicken-derived C. perfringens isolates, from around the world and from different years. The genomes were sequenced and compared with 20 genomes available from public databases, which were from a diverse collection of isolates from chickens, other animals, and humans. We used a distance based phylogeny that was constructed based on gene content rather than sequence identity. Similarity between strains was defined as the number of genes that they have in common divided by their total number of genes. In this type of phylogenetic analysis, evolutionary distance can be interpreted in terms of evolutionary events such as acquisition and loss of genes, whereas the underlying properties (the gene content) can be interpreted in terms of function. We also compared these methods to the sequence-based phylogeny of the core genome. RESULTS: Distinct pathogenic clades of necrotic enteritis-causing C. perfringens were identified. They were characterised by variable regions encoded on the chromosome, with predicted roles in capsule production, adhesion, inhibition of related strains, phage integration, and metabolism. Some strains have almost identical genomes, even though they were isolated from different geographic regions at various times, while other highly distant genomes appear to result in similar outcomes with regard to virulence and pathogenesis. CONCLUSIONS: The high level of diversity in chicken isolates suggests there is no reliable factor that defines a chicken strain of C. perfringens, however, disease-causing strains can be defined by the presence of netB-encoding plasmids. This study reveals that horizontal gene transfer appears to play a significant role in genetic variation of the C. perfringens chromosome as well as the plasmid content within strains.


Assuntos
Clostridium perfringens/genética , Clostridium perfringens/fisiologia , Enterite/microbiologia , Evolução Molecular , Variação Genética , Animais , Galinhas/microbiologia , Cromossomos/genética , Enterite/complicações , Necrose/complicações , Plasmídeos/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-29712662

RESUMO

Colistin is a crucial last-line drug used for the treatment of life-threatening infections caused by multidrug-resistant strains of the Gram-negative bacterium Acinetobacter baumannii However, colistin-resistant A. baumannii isolates can still be isolated following failed colistin therapy. Resistance is most often mediated by the addition of phosphoethanolamine (pEtN) to lipid A by PmrC, following missense mutations in the pmrCAB operon encoding PmrC and the two-component signal transduction system PmrA/PmrB. We recovered a pair of A. baumannii isolates from a single patient before (6009-1) and after (6009-2) failed colistin treatment. These strains displayed low and very high levels of colistin resistance (MICs, 8 to 16 µg/ml and 128 µg/ml), respectively. To understand how increased colistin resistance arose, we sequenced the genome of each isolate, which revealed that 6009-2 had an extra copy of the insertion sequence element ISAba125 within a gene encoding an H-NS family transcriptional regulator. To confirm the role of H-NS in colistin resistance, we generated an hns deletion mutant in 6009-1 and showed that colistin resistance increased upon the deletion of hns We also provided 6009-2 with an intact copy of hns and showed that the strain was no longer resistant to high concentrations of colistin. Transcriptomic analysis of the clinical isolates identified more than 150 genes as being differentially expressed in the colistin-resistant hns mutant 6009-2. Importantly, the expression of eptA, encoding a second lipid A-specific pEtN transferase but not pmrC, was increased in the hns mutant. This is the first time an H-NS family transcriptional regulator has been associated with a pEtN transferase and colistin resistance.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Colistina/farmacologia , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Immunol Cell Biol ; 96(5): 507-525, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29437263

RESUMO

Mucosal-associated invariant T (MAIT) cells represent up to 10% of circulating human T cells. They are usually defined using combinations of non-lineage-specific (surrogate) markers such as anti-TRAV1-2, CD161, IL-18Rα and CD26. The development of MR1-Ag tetramers now permits the specific identification of MAIT cells based on T-cell receptor specificity. Here, we compare these approaches for identifying MAIT cells and show that surrogate markers are not always accurate in identifying these cells, particularly the CD4+ fraction. Moreover, while all MAIT cell subsets produced comparable levels of IFNγ, TNF and IL-17A, the CD4+ population produced more IL-2 than the other subsets. In a human ontogeny study, we show that the frequencies of most MR1 tetramer+ MAIT cells, with the exception of CD4+ MAIT cells, increased from birth to about 25 years of age and declined thereafter. We also demonstrate a positive association between the frequency of MAIT cells and other unconventional T cells including Natural Killer T (NKT) cells and Vδ2+ γδ T cells. Accordingly, this study demonstrates that MAIT cells are phenotypically and functionally diverse, that surrogate markers may not reliably identify all of these cells, and that their numbers are regulated in an age-dependent manner and correlate with NKT and Vδ2+ γδ T cells.


Assuntos
Envelhecimento/imunologia , Células Sanguíneas/imunologia , Separação Celular/métodos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Matadoras Naturais/imunologia , Subpopulações de Linfócitos T/imunologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ativação Linfocitária , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA