RESUMO
The SARS-CoV-2 nucleocapsid (N) protein performs several functions including binding, compacting, and packaging the â¼30 kb viral genome into the viral particle. N protein consists of two ordered domains, with the N terminal domain (NTD) primarily associated with RNA binding and the C terminal domain (CTD) primarily associated with dimerization/oligomerization, and three intrinsically disordered regions, an N-arm, a C-tail, and a linker that connects the NTD and CTD. We utilize an optical tweezers system to isolate a long single-stranded nucleic acid substrate to measure directly the binding and packaging function of N protein at a single molecule level in real time. We find that N protein binds the nucleic acid substrate with high affinity before oligomerizing and forming a highly compact structure. By comparing the activities of truncated protein variants missing the NTD, CTD, and/or linker, we attribute specific steps in this process to the structural domains of N protein, with the NTD driving initial binding to the substrate and ensuring high localized protein density that triggers interprotein interactions mediated by the CTD, which forms a compact and stable protein-nucleic acid complex suitable for packaging into the virion.
Assuntos
COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , RNA Viral , SARS-CoV-2 , Humanos , COVID-19/virologia , Domínios Proteicos , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismoRESUMO
"The TOXI Chemical Exposures and Impact on Health" session at the 2020 Fall ACS meeting presented analytical and biological approaches, advancing our understanding of legacy and emerging chemical pollutants and their impact on human health.
Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Xenobióticos/toxicidade , Técnicas de Química Analítica/métodos , Exposição Ambiental/efeitos adversos , Humanos , Saúde Pública , Testes de Toxicidade/métodosRESUMO
RNA molecules are flexible yet foldable. Proteins must cope with this structural duality when forming biologically active complexes with RNA. Recent studies of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs)-mediated RNA immunity illustrate some remarkable mechanisms with which proteins interact with RNA. Currently known structures of CRISPR-Cas6 endoribonucleases bound with RNA suggest a conserved protein recognition mechanism mediated by RNA stem-loops. However, a survey of CRISPR RNA reveals that many repeats either lack a productive stem-loop (Relaxed) or possess stable but inhibitory structures (Tight), which raises the question of how the enzyme processes structurally diverse RNA. In reviewing recent literature, we propose a bivalent trapping and an unwinding mechanism for CRISPR-Cas6 to interact with the Relaxed and the Tight repeat RNA, respectively. Both mechanisms aim to create an identical RNA conformation at the cleavage site for accurate processing.
Assuntos
Sistemas CRISPR-Cas , Endorribonucleases/metabolismo , Conformação de Ácido Nucleico , RNA/metabolismo , Archaea/enzimologia , Archaea/genética , Proteínas Arqueais/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA/química , Proteínas de Ligação a RNA/metabolismoRESUMO
DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer termini containing DNA damage or mismatched base pairs. Pol kappa generally cannot copy DNA containing major groove modifications or UV-induced photoproducts. Pol kappa can also copy structured or non-B-form DNA, such as microsatellite DNA, common fragile sites, and DNA containing G quadruplexes. Thus, pol kappa has roles both in maintaining and compromising genomic integrity. The expression of pol kappa is altered in several different cancer types, which can lead to genome instability. In addition, many cancer-associated single-nucleotide polymorphisms have been reported in the POLK gene, some of which are associated with poor survival and altered chemotherapy response. Because of this, identifying inhibitors of pol kappa is an active area of research. This review will address these activities of pol kappa, with a focus on lesion bypass and cellular mutagenesis.
Assuntos
Adutos de DNA/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Dano ao DNA/genética , DNA Polimerase Dirigida por DNA/química , Quadruplex G , Humanos , Mutagênese/genéticaRESUMO
The crystal structures of an unliganded and adenosine 5'-monophosphate (AMP) bound, metal-dependent phosphoesterase (YP_910028.1) from Bifidobacterium adolescentis are reported at 2.4 and 1.94 Å, respectively. Functional characterization of this enzyme was guided by computational analysis and then confirmed by experiment. The structure consists of a polymerase and histidinol phosphatase (PHP, Pfam: PF02811) domain with a second domain (residues 105-178) inserted in the middle of the PHP sequence. The insert domain functions in binding AMP, but the precise function and substrate specificity of this domain are unknown. Initial bioinformatics analyses yielded multiple potential functional leads, with most of them suggesting DNA polymerase or DNA replication activity. Phylogenetic analysis indicated a potential DNA polymerase function that was somewhat supported by global structural comparisons identifying the closest structural match to the alpha subunit of DNA polymerase III. However, several other functional predictions, including phosphoesterase, could not be excluded. Theoretical microscopic anomalous titration curve shapes, a computational method for the prediction of active sites from protein 3D structures, identified potential reactive residues in YP_910028.1. Further analysis of the predicted active site and local comparison with its closest structure matches strongly suggested phosphoesterase activity, which was confirmed experimentally. Primer extension assays on both normal and mismatched DNA show neither extension nor degradation and provide evidence that YP_910028.1 has neither DNA polymerase activity nor DNA-proofreading activity. These results suggest that many of the sequence neighbors previously annotated as having DNA polymerase activity may actually be misannotated.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bifidobacterium/enzimologia , Esterases/química , Esterases/metabolismo , 4-Nitrofenilfosfatase/química , 4-Nitrofenilfosfatase/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Cristalografia , DNA Polimerase III/química , DNA Polimerase III/metabolismo , Histidinol-Fosfatase/química , Histidinol-Fosfatase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Reprodutibilidade dos Testes , Relação Estrutura-AtividadeRESUMO
The genome of the human hepatitis delta virus (HDV) harbors a self-cleaving catalytic RNA motif, the genomic HDV ribozyme, whose crystal structure shows the dangling nucleotides 5' of the cleavage site projecting away from the catalytic core. This 5'-sequence contains a clinically conserved U-1 that we find to be essential for fast cleavage, as the order of activity follows U-1 > C-1 > A-1 > G-1, with a >25-fold activity loss from U-1 to G-1. Terbium(III) footprinting detects conformations for the P1.1 stem, the cleavage site wobble pair and the A-minor motif of the catalytic trefoil turn that depend on the identity of the N-1 base. The most tightly folded catalytic core, resembling that of the reaction product, is found in the U-1 wild-type precursor. Molecular dynamics simulations demonstrate that a U-1 forms the most robust kink around the scissile phosphate, exposing it to the catalytic C75 in a previously unnoticed U-turn motif found also, for example, in the hammerhead ribozyme and tRNAs. Strikingly, we find that the common structural U-turn motif serves distinct functions in the HDV and hammerhead ribozymes.
Assuntos
Vírus Delta da Hepatite/enzimologia , RNA Catalítico/química , RNA Viral/química , Sequência de Bases , Sítios de Ligação , Catálise , Simulação por Computador , Genoma Viral , Vírus Delta da Hepatite/genética , Ligação de Hidrogênio , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Purinas/química , Pirimidinas/química , Térbio/química , Uracila/químicaRESUMO
The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme involved in the replication of a human pathogen, the hepatitis delta virus. Recent crystal structures of the precursor and product of self-cleavage, together with detailed kinetic analyses, have led to hypotheses on the catalytic strategies employed by the HDV ribozyme. We report molecular dynamics (MD) simulations (approximately 120 ns total simulation time) to test the plausibility that specific conformational rearrangements are involved in catalysis. Site-specific self-cleavage requires cytidine in position 75 (C75). A precursor simulation with unprotonated C75 reveals a rather weak dynamic binding of C75 in the catalytic pocket with spontaneous, transient formation of a H-bond between U-1(O2') and C75(N3). This H-bond would be required for C75 to act as the general base. Upon protonation in the precursor, C75H+ has a tendency to move towards its product location and establish a firm H-bonding network within the catalytic pocket. However, a C75H+(N3)-G1(O5') H-bond, which would be expected if C75 acted as a general acid catalyst, is not observed on the present simulation timescale. The adjacent loop L3 is relatively dynamic and may serve as a flexible structural element, possibly gated by the closing U20.G25 base-pair, to facilitate a conformational switch induced by a protonated C75H+. L3 also controls the electrostatic environment of the catalytic core, which in turn may modulate C75 base strength and metal ion binding. We find that a distant RNA tertiary interaction involving a protonated cytidine (C41) becomes unstable when left unprotonated, leading to disruptive conformational rearrangements adjacent to the catalytic core. A Na ion temporarily compensates for the loss of the protonated hydrogen bond, which is strikingly consistent with the experimentally observed synergy between low pH and high Na+ concentrations in mediating residual self-cleavage of the HDV ribozyme in the absence of divalents.
Assuntos
Vírus Delta da Hepatite/enzimologia , RNA Catalítico/química , RNA Viral/química , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Vírus Delta da Hepatite/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Prótons , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Eletricidade Estática , TermodinâmicaRESUMO
Y-family DNA polymerases are important for conferring cellular resistance to DNA damaging agents in part due to their specialized ability to copy damaged DNA. The Escherichia coli Y-family DNA polymerases are encoded by the umuDC and dinB genes. UmuC and the cleaved form of UmuD, UmuD', form UmuD'2C (pol V), which is able to bypass UV photoproducts such as cyclobutane pyrimidine dimers and 6-4 thymine-thymine dimers, whereas DinB is specialized to copy N(2)-dG adducts, such as N(2)-furfuryl-dG. To better understand this inherent specificity, we used hydroxylamine to generate a random library of UmuC variants from which we then selected those with the ability to confer survival to nitrofurazone (NFZ), which is believed to cause N(2)-furfuryl-dG lesions. We tested the ability of three of the selected UmuC variants, A9V, H282P, and T412I, to bypass N(2)-furfuryl-dG in vitro, and discovered that pol V containing UmuC A9V has overall modestly better primer extension activity than WT pol V, whereas the UmuC T412I and UmuC H282P mutations result in much lower primer extension efficiency. Upon further characterization, we found that the ability of the UmuC variant A9V to render cells UV-mutable is dependent on the proper length of the arm of UmuD'. Cells harboring UmuC variants T412I and H282P show enhanced cleavage of UmuD to form UmuD', which, together with our other observations, suggests that this may be due to a disruption of a direct interaction between UmuC and UmuD. Thus, we find that protein interactions as well as protein conformation appear to be crucial for resistance to specific types of DNA damage.
Assuntos
Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Mutação Puntual , Substituição de Aminoácidos , DNA Polimerase Dirigida por DNA/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos da radiação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Nitrofurazona/farmacologia , Raios Ultravioleta/efeitos adversosRESUMO
The alpha subunit of the replicative DNA polymerase III of Escherichia coli is the active polymerase of the 10-subunit bacterial replicase. The C-terminal region of the alpha subunit is predicted to contain an oligonucleotide binding (OB-fold) domain. In a series of optical tweezers experiments, the alpha subunit is shown to have an affinity for both double- and single-stranded DNA, in distinct subdomains of the protein. The portion of the protein that binds to double-stranded DNA stabilizes the DNA helix, because protein binding must be at least partially disrupted with increasing force to melt DNA. Upon relaxation, the DNA fails to fully reanneal, because bound protein interferes with the reformation of the double helix. In addition, the single-stranded DNA binding component appears to be passive, as the protein does not facilitate melting but instead binds to single-stranded regions already separated by force. From DNA stretching measurements we determine equilibrium association constants for the binding of alpha and several fragments to dsDNA and ssDNA. The results demonstrate that ssDNA binding is localized to the C-terminal region that contains the OB-fold domain, while a tandem helix-hairpin-helix (HhH) 2 motif contributes significantly to dsDNA binding.
Assuntos
DNA Polimerase III/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Modelos Moleculares , Ligação ProteicaRESUMO
The self-cleaving hepatitis delta virus (HDV) ribozyme is essential for the replication of HDV, a liver disease causing pathogen in humans. The catalytically critical nucleotide C75 of the ribozyme is buttressed by a trefoil turn pivoting around an extruded G76. In all available crystal structures, the conformation of G76 is restricted by stacking with G76 of a neighboring molecule. To test whether this crystal contact introduces a structural perturbation into the catalytic core, we have analyzed approximately 200 ns of molecular dynamics (MD) simulations. In the absence of crystal packing, the simulated G76 fluctuates between several conformations, including one wherein G76 establishes a perpendicular base quadruplet in the major groove of the adjacent P1 stem. Second-site mutagenesis experiments suggest that the identity of the nucleotide in position 76 (N76) indeed contributes to the catalytic activity of a trans-acting HDV ribozyme through its capacity for hydrogen bonding with P1. By contrast, in the cis-cleaving genomic ribozyme the functional relevance of N76 is less pronounced and not correlated with the P1 sequence. Terbium(III) footprinting and additional MD show that the activity differences between N76 mutants of this ribozyme are related instead to changes in average conformation and modified cross-correlations in the trefoil turn.
Assuntos
Vírus Delta da Hepatite/enzimologia , Nucleotídeos/química , RNA Catalítico/química , RNA Viral/química , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , RNA Catalítico/metabolismo , RNA Viral/metabolismo , Relação Estrutura-Atividade , Térbio/químicaRESUMO
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.
Assuntos
Cátions Bivalentes/química , Cátions Monovalentes/química , Vírus Delta da Hepatite/enzimologia , RNA Catalítico/química , Sequência de Bases , Sítios de Ligação , Ligação de Hidrogênio , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Sódio/química , Água/químicaRESUMO
The hepatitis delta virus (HDV), an infectious human pathogen affecting millions of people worldwide, leads to intensified disease symptoms, including progression to liver cirrhosis upon coinfection with its helper virus, HBV. Both the circular RNA genome of HDV and its complementary antigenome contain a common cis-cleaving catalytic RNA motif, the HDV ribozyme, which plays a crucial role in viral replication. Previously, the crystal structure of the product form of the cis-acting genomic HDV ribozyme has been determined, and the precursor form has been suggested to be structurally similar. In contrast, solution studies by fluorescence resonance energy transfer (FRET) on a trans-cleaving form of the ribozyme have shown significant global conformational changes upon catalysis, while 2-aminopurine (AP) fluorescence assays have detected concomitant local conformational changes in the catalytic core. Here, we augment these studies by using terbium(III) to probe the structure of the trans-acting HDV ribozyme at nucleotide resolution. We observe significant structural differences between the precursor and product forms, especially in the P1.1 helix and the trefoil turn in the single-stranded region connecting P4 and P2 (termed J4/2) of the catalytic core. We show, using terbium(III) footprinting and sensitized luminescence spectroscopy as well as steady-state, time-resolved, and gel-mobility FRET assays on a systematic set of substrates, that the substrate sequence immediately 5' to the cleavage site significantly modulates these local as well as resultant global structural differences. Our results suggest a structural basis for the previously observed impact of the 5' substrate sequence on catalytic activity.