RESUMO
BACKGROUND: Clinical intervention in early stages of psychotic disorders is crucial for the prevention of severe symptomatology trajectories and poor outcomes. Genetic variability is studied as a promising modulator of prognosis, thus novel approaches considering the polygenic nature of these complex phenotypes are required to unravel the mechanisms underlying the early progression of the disorder. METHODS: The sample comprised of 233 first-episode psychosis (FEP) subjects with clinical and cognitive data assessed periodically for a 2-year period and 150 matched controls. Polygenic risk scores (PRSs) for schizophrenia, bipolar disorder, depression, education attainment and cognitive performance were used to assess the genetic risk of FEP and to characterize their association with premorbid, baseline and progression of clinical and cognitive status. RESULTS: Schizophrenia, bipolar disorder and cognitive performance PRSs were associated with an increased risk of FEP [false discovery rate (FDR) ⩽ 0.027]. In FEP patients, increased cognitive PRSs were found for FEP patients with more cognitive reserve (FDR ⩽ 0.037). PRSs reflecting a genetic liability for improved cognition were associated with a better course of symptoms, functionality and working memory (FDR ⩽ 0.039). Moreover, the PRS of depression was associated with a worse trajectory of the executive function and the general cognitive status (FDR ⩽ 0.001). CONCLUSIONS: Our study provides novel evidence of the polygenic bases of psychosis and its clinical manifestation in its first stage. The consistent effect of cognitive PRSs on the early clinical progression suggests that the mechanisms underlying the psychotic episode and its severity could be partially independent.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Fatores de Risco , Progressão da Doença , CogniçãoRESUMO
Current antipsychotics (APs) effectively control positive psychotic symptoms, mainly by blocking dopamine (DA) D2 receptors, but have little effect on negative and cognitive symptoms. Increased glutamate (GLU) release would trigger neurotoxicity, leading to apoptosis and synaptic pruning, which is involved in the pathophysiology of schizophrenia. New pharmacological strategies are being developed such as positive allosteric modulators (PAMs) of the metabotropic GLU receptor 2 (mGluR2) that inhibit the presynaptic release of GLU. We previously reported that treatment of adult mice with JNJ-46356479 (JNJ), a recently developed mGluR2 PAM, partially improved neuropathological deficits and schizophrenia-like behavior in a postnatal ketamine mouse model. In the present study, we evaluated, for the first time, the putative neuroprotective and antiapoptotic activity of JNJ in a human neuroblastoma cell line and compared it with the effect of clozapine (CLZ) as a clinical AP with the highest efficacy and with apparent utility in managing negative symptoms. Specifically, we measured changes in cell viability, caspase 3 activity and apoptosis, as well as in the expression of key genes involved in survival and cell death, produced by CLZ and JNJ alone and in combination with a high DA or GLU concentration as apoptosis inducers. Our results suggest that JNJ is not neurotoxic and attenuates apoptosis, particularly by decreasing the caspase 3 activation induced by DA and GLU, as well as increasing and decreasing the number of viable and apoptotic cells, respectively, only when cultures were exposed to GLU. Its effects seem to be less neurotoxic and more neuroprotective than those observed with CLZ. Moreover, JNJ partially normalized altered expression levels of glycolytic genes, which could act as a protective factor and be related to its putative neuroprotective effect. More studies are needed to define the mechanisms of action of this GLU modulator and its potential to become a novel therapeutic agent for schizophrenia.
Assuntos
Clozapina , Neuroblastoma , Fármacos Neuroprotetores , Adulto , Humanos , Camundongos , Animais , Clozapina/farmacologia , Fármacos Neuroprotetores/farmacologia , Caspase 3 , Ácido Glutâmico/toxicidade , Técnicas de Cultura de Células , Neuroblastoma/tratamento farmacológico , Regulação AlostéricaRESUMO
Schizophrenia and bipolar disorder exhibit substantial clinical overlap, particularly in individuals at familial high risk, who frequently present sub-threshold symptoms before the onset of illness. Severe mental disorders are highly polygenic traits, but their impact on the stages preceding the manifestation of mental disorders remains relatively unexplored. Our study aimed to examine the influence of polygenic risk scores (PRS) on sub-clinical outcomes over a 2-year period in youth at familial high risk for schizophrenia and bipolar disorder and controls. The sample included 222 children and adolescents, comprising offspring of parents with schizophrenia (n = 38), bipolar disorder (n = 80), and community controls (n = 104). We calculated PRS for psychiatric disorders, neuroticism and cognition using the PRS-CS method. Linear mixed-effects models were employed to investigate the association between PRS and cognition, symptom severity and functioning. Mediation analyses were conducted to explore whether clinical features acted as intermediaries in the impact of PRS on functioning outcomes. SZoff exhibited elevated PRS for schizophrenia. In the entire sample, PRS for depression, neuroticism, and cognitive traits showed associations with sub-clinical features. The effect of PRS for neuroticism and general intelligence on functioning outcomes were mediated by cognition and symptoms severity, respectively. This study delves into the interplay among genetics, the emergence of sub-clinical symptoms and functioning outcomes, providing novel evidence on mechanisms underpinning the continuum from sub-threshold features to the onset of mental disorders. The findings underscore the interplay of genetics, cognition, and clinical features, providing insights for personalized early interventions.
Assuntos
Transtorno Bipolar , Esquizofrenia , Criança , Humanos , Adolescente , Estratificação de Risco Genético , Predisposição Genética para Doença/genética , Transtorno Bipolar/psicologia , Esquizofrenia/genética , Esquizofrenia/diagnóstico , Cognição , Fatores de RiscoRESUMO
Epigenetic modifications occur sequentially during the lifespan, but their pace can be altered by external stimuli. The onset of schizophrenia and bipolar disorder is critically modulated by stressors that may alter the epigenetic pattern, a putative signature marker of exposure to environmental risk factors. In this study, we estimated the age-related epigenetic modifications to assess the differences between young individuals at familial high risk (FHR) and controls and their association with environmental stressors. The sample included 117 individuals (6-17 years) at FHR (45%) and a control group (55%). Blood and saliva samples were used estimate the epigenetic age with six epigenetic clocks through methylation data. Environmental risk was measured with obstetric complications, socioeconomic statuses and recent stressful life events data. Epigenetic age was correlated with chronological age. FHR individuals showed epigenetic age deacceleration of Horvath and Hannum epigenetic clocks compared to controls. No effect of the environmental risk factors on the epigenetic age acceleration could be detected. Epigenetic age acceleration adjusted by cell counts showed that the FHR group was deaccelerated also with the PedBE epigenetic clock. Epigenetic age asynchronicities were found in the young at high risk, suggesting that offspring of affected parents follow a slower pace of biological aging than the control group. It still remains unclear which environmental stressors orchestrate the changes in the methylation pattern. Further studies are needed to better characterize the molecular impact of environmental stressors before illness onset, which could be critical in the development of tools for personalized psychiatry.
Assuntos
Transtorno Bipolar , Esquizofrenia , Feminino , Gravidez , Humanos , Adolescente , Metilação de DNA , Transtorno Bipolar/genética , Esquizofrenia/genética , Predisposição Genética para Doença , Envelhecimento , Epigênese GenéticaRESUMO
Cannabis use is highly prevalent in first-episode psychosis (FEP) and plays a critical role in its onset and prognosis, but the genetic underpinnings promoting both conditions are poorly understood. Current treatment strategies for cannabis cessation in FEP are clearly inefficacious. Here, we aimed to characterize the association between cannabis-related polygenic risk scores (PRS) on cannabis use and clinical course after a FEP. A cohort of 249 FEP individuals were evaluated during 12 months. Symptom severity was measured with the Positive and Negative Severity Scale and cannabis use with the EuropASI scale. Individual PRS for lifetime cannabis initiation (PRSCI) and cannabis use disorder (PRSCUD) were constructed. Current cannabis use was associated with increased positive symptoms. Cannabis initiation at younger ages conditioned the 12-month symptom progression. FEP patients with higher cannabis PRSCUD reported increased baseline cannabis use. PRSCI was associated with the course of negative and general symptomatology over follow-up. Cannabis use and symptom progression after a FEP were modulated by cannabis PRS, suggesting that lifetime initiation and use disorders may have partially independent genetic factors. These exploratory results may be the first step to identify those FEP patients more vulnerable to cannabis use and worse outcomes to ultimately develop tailored treatments.
Assuntos
Cannabis , Transtornos Psicóticos , Humanos , Cannabis/efeitos adversos , Transtornos Psicóticos/genética , Transtornos Psicóticos/terapia , Fatores de Risco , Herança MultifatorialRESUMO
OBJECTIVE: Cognitive impairment is an important feature of schizophrenia (SZ) and bipolar disorder (BP) with severity across the two disorders characterized by significant heterogeneity. Youth at family risk for SZ and BP were clustered based on cognitive function and examined in terms of the clinical, genetic, and brain imaging correlates of cluster membership. METHOD: One hundred sixty participants, 32 offspring of patients with SZ, 59 offspring of patients with BP and 69 offspring of healthy control parents underwent clinical and cognitive assessments, genotyping and structural MRI. K-means clustering was used to group family risk participants based on cognitive measures. Clusters were compared in terms of cortical and subcortical brain measures as well as polygenic risk scores. RESULTS: Participants were grouped in 3 clusters with intact, intermediate, and impaired cognitive performance. The intermediate and impaired clusters had lower total brain surface area compared with the intact cluster, with prominent localization in frontal and temporal cortices. No between-cluster differences were identified in cortical thickness and subcortical brain volumes. The impaired cluster also had poorer psychosocial functioning and worse PRS-COG compared with the other 2 clusters and with offspring of healthy control parents, while there was no significant between-cluster difference in terms of PRS-SZ and PRS-BP. PRS-COG predicted psychosocial functioning, yet this effect did not appear to be mediated by an effect of PRS-COG on brain area. CONCLUSION: Stratification based on cognition may help to elucidate the biological underpinnings of cognitive heterogeneity across SZ and BP risk.
Assuntos
Transtorno Bipolar , Disfunção Cognitiva , Esquizofrenia , Humanos , Adolescente , Transtorno Bipolar/psicologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , CogniçãoRESUMO
Obsessive-compulsive disorder (OCD) has a complex etiology that seems to include immune dysfunction and alterations in circulating monocytes. To investigate the immune basis and the functional dysregulation of monocytes in this disease, we analyzed gene expression in the peripheral monocytes of pediatric patients with OCD (N = 102) compared to controls (N = 47). We examined gene expression in primary cultures of peripheral monocytes from participants, under basal conditions and under exposure to lipopolysaccharide (LPS) to stimulate immune response. Whole-genome expression was assessed in 8 patients and 8 controls. Differentially expressed genes were identified followed by protein-protein interaction network construction and functional annotation analysis to identify the genes and biological processes that are altered in the monocytes of OCD patients. We also explored the expression levels of selected genes in monocytes from the other participants using qPCR. Several changes in gene expression were observed in the monocytes of OCD patients, with several immune processes involved under basal conditions (antigen processing and presentation, regulation of immune system and leukocyte cell adhesion) and after LPS stimulation (immune and inflammatory response, cytokine production and leukocyte activation). Despite the qPCR analysis provided no significant differences between patients and controls, high correlations were observed between the expression levels of some of the genes and inflammatory markers (i.e., T helper 17 and regulatory T cell levels, total monocyte and proinflammatory monocyte subset levels, and the cytokine production by resting and stimulated monocytes) of the study participants. Our findings provide more evidence of the involvement of monocyte dysregulation in early-onset OCD, indicating a proinflammatory predisposition and an enhanced immune response to environmental triggers.
Assuntos
Monócitos , Transtorno Obsessivo-Compulsivo , Criança , Expressão Gênica , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismoRESUMO
OBJECTIVE: Metabolic syndrome is a health-threatening condition suffered by approximately one third of schizophrenia patients and largely attributed to antipsychotic medication. Previous evidence reports a common genetic background of psychotic and metabolic disorders. In this study, we aimed to assess the role of polygenic risk scores (PRSs) on the progression of the metabolic profile in a first-episode psychosis (FEP) cohort. METHOD: Of the 231 FEP individuals included in the study, 192-220 participants were included in basal analysis and 118-179 in longitudinal 6-month models. Eleven psychopathologic and metabolic PRSs were constructed. Basal and longitudinal PRSs association with metabolic measurements was assessed by statistical analyses. RESULTS: No major association of psychopathological PRSs with the metabolic progression was found. However, high risk individuals for depression and cholesterol-related PRSs reported a higher increase of cholesterol levels during the follow-up (FDR ≤ 0.023 for all analyses). Their effect was comparable to other well-established pharmacological and environmental risk factors (explaining at least 1.2% of total variance). CONCLUSION: Our findings provide new evidence of the effects of metabolic genetic risk on the development of metabolic dysregulation. The future establishment of genetic profiling tools in clinical procedures could enable practitioners to better personalize antipsychotic treatment selection and dosage.
Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Antipsicóticos/efeitos adversos , Humanos , Estudos Longitudinais , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/genética , Transtornos Psicóticos/patologia , Fatores de Risco , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genéticaRESUMO
Antipsychotics (APs) are associated with weight gain and other metabolic abnormalities such as hyperglycemia, dyslipidemia and metabolic syndrome. This translational study aimed to uncover the underlying molecular mechanisms and identify the key genes involved in AP-induced metabolic effects. An integrative gene expression analysis was performed in four different mouse tissues (striatum, liver, pancreas and adipose) after risperidone or olanzapine treatment. The analytical approach combined the identification of the gene co-expression modules related to AP treatment, gene set enrichment analysis and protein-protein interaction network construction. We found several co-expression modules of genes involved in glucose and lipid homeostasis, hormone regulation and other processes related to metabolic impairment. Among these genes, EP300, which encodes an acetyltransferase involved in transcriptional regulation, was identified as the most important hub gene overlapping the networks of both APs. Then, we explored the genetically predicted EP300 expression levels in a cohort of 226 patients with first-episode psychosis who were being treated with APs to further assess the association of this gene with metabolic alterations. The EP300 expression levels were significantly associated with increases in body weight, body mass index, total cholesterol levels, low-density lipoprotein cholesterol levels and triglyceride concentrations after 6 months of AP treatment. Taken together, our analysis identified EP300 as a key gene in AP-induced metabolic abnormalities, indicating that the dysregulation of EP300 function could be important in the development of these side effects. However, more studies are needed to disentangle the role of this gene in the mechanism of action of APs.