Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7952): 411-417, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922611

RESUMO

Early works1 and recent advances in thin-film lithium niobate (LiNbO3) on insulator have enabled low-loss photonic integrated circuits2,3, modulators with improved half-wave voltage4,5, electro-optic frequency combs6 and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces7. Although recent advances have demonstrated tunable integrated lasers based on LiNbO3 (refs. 8,9), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved. Here we report such a laser with a fast tuning rate based on a hybrid silicon nitride (Si3N4)-LiNbO3 photonic platform and demonstrate its use for coherent laser ranging. Our platform is based on heterogeneous integration of ultralow-loss Si3N4 photonic integrated circuits with thin-film LiNbO3 through direct bonding at the wafer level, in contrast to previously demonstrated chiplet-level integration10, featuring low propagation loss of 8.5 decibels per metre, enabling narrow-linewidth lasing (intrinsic linewidth of 3 kilohertz) by self-injection locking to a laser diode. The hybrid mode of the resonator allows electro-optic laser frequency tuning at a speed of 12 × 1015 hertz per second with high linearity and low hysteresis while retaining the narrow linewidth. Using a hybrid integrated laser, we perform a proof-of-concept coherent optical ranging (FMCW LiDAR) experiment. Endowing Si3N4 photonic integrated circuits with LiNbO3 creates a platform that combines the individual advantages of thin-film LiNbO3 with those of Si3N4, which show precise lithographic control, mature manufacturing and ultralow loss11,12.

2.
Proc Natl Acad Sci U S A ; 120(7): e2217835120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36757890

RESUMO

The amyloid aggregation of alpha-synuclein within the brain is associated with the pathogenesis of Parkinson's disease (PD) and other related synucleinopathies, including multiple system atrophy (MSA). Alpha-synuclein aggregates are a major therapeutic target for treatment of these diseases. We identify two small molecules capable of disassembling preformed alpha-synuclein fibrils. The compounds, termed CNS-11 and CNS-11g, disaggregate recombinant alpha-synuclein fibrils in vitro, prevent the intracellular seeded aggregation of alpha-synuclein fibrils, and mitigate alpha-synuclein fibril cytotoxicity in neuronal cells. Furthermore, we demonstrate that both compounds disassemble fibrils extracted from MSA patient brains and prevent their intracellular seeding. They also reduce in vivo alpha-synuclein aggregates in C. elegans. Both compounds also penetrate brain tissue in mice. A molecular dynamics-based computational model suggests the compounds may exert their disaggregating effects on the N terminus of the fibril core. These compounds appear to be promising therapeutic leads for targeting alpha-synuclein for the treatment of synucleinopathies.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , alfa-Sinucleína/metabolismo , Sinucleinopatias/patologia , Caenorhabditis elegans/metabolismo , Doença de Parkinson/patologia , Atrofia de Múltiplos Sistemas/patologia , Encéfalo/metabolismo , Amiloide/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(41): e2300258120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801475

RESUMO

Despite much effort, antibody therapies for Alzheimer's disease (AD) have shown limited efficacy. Challenges to the rational design of effective antibodies include the difficulty of achieving specific affinity to critical targets, poor expression, and antibody aggregation caused by buried charges and unstructured loops. To overcome these challenges, we grafted previously determined sequences of fibril-capping amyloid inhibitors onto a camel heavy chain antibody scaffold. These sequences were designed to cap fibrils of tau, known to form the neurofibrillary tangles of AD, thereby preventing fibril elongation. The nanobodies grafted with capping inhibitors blocked tau aggregation in biosensor cells seeded with postmortem brain extracts from AD and progressive supranuclear palsy (PSP) patients. The tau capping nanobody inhibitors also blocked seeding by recombinant tau oligomers. Another challenge to the design of effective antibodies is their poor blood-brain barrier (BBB) penetration. In this study, we also designed a bispecific nanobody composed of a nanobody that targets a receptor on the BBB and a tau capping nanobody inhibitor, conjoined by a flexible linker. We provide evidence that the bispecific nanobody improved BBB penetration over the tau capping inhibitor alone after intravenous administration in mice. Our results suggest that the design of synthetic antibodies that target sequences that drive protein aggregation may be a promising approach to inhibit the prion-like seeding of tau and other proteins involved in AD and related proteinopathies.


Assuntos
Doença de Alzheimer , Anticorpos de Domínio Único , Paralisia Supranuclear Progressiva , Humanos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/metabolismo , Emaranhados Neurofibrilares/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Anticorpos/metabolismo , Encéfalo/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(34): e2206240119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969734

RESUMO

Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-ß (Aß) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development. Recent advances have enabled the determination of amyloid fibril structures to atomic-level resolution, improving the possibility of structure-based inhibitor design. In this work, we use these amyloid structures to design inhibitors that bind to the ends of fibrils, "capping" them so as to prevent further growth. Using de novo protein design, we develop a library of miniprotein inhibitors of 35 to 48 residues that target the amyloid structures of tau, Aß, and αSyn. Biophysical characterization of top in silico designed inhibitors shows they form stable folds, have no sequence similarity to naturally occurring proteins, and specifically prevent the aggregation of their targeted amyloid-prone proteins in vitro. The inhibitors also prevent the seeded aggregation and toxicity of fibrils in cells. In vivo evaluation reveals their ability to reduce aggregation and rescue motor deficits in Caenorhabditis elegans models of PD and AD.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Agregação Patológica de Proteínas/tratamento farmacológico , alfa-Sinucleína/antagonistas & inibidores , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Amiloidose , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/química
5.
J Biol Chem ; 295(31): 10662-10676, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32493775

RESUMO

Soluble oligomers of aggregated tau accompany the accumulation of insoluble amyloid fibrils, a histological hallmark of Alzheimer disease (AD) and two dozen related neurodegenerative diseases. Both oligomers and fibrils seed the spread of Tau pathology, and by virtue of their low molecular weight and relative solubility, oligomers may be particularly pernicious seeds. Here, we report the formation of in vitro tau oligomers formed by an ionic liquid (IL15). Using IL15-induced recombinant tau oligomers and a dot blot assay, we discovered a mAb (M204) that binds oligomeric tau, but not tau monomers or fibrils. M204 and an engineered single-chain variable fragment (scFv) inhibited seeding by IL15-induced tau oligomers and pathological extracts from donors with AD and chronic traumatic encephalopathy. This finding suggests that M204-scFv targets pathological structures that are formed by tau in neurodegenerative diseases. We found that M204-scFv itself partitions into oligomeric forms that inhibit seeding differently, and crystal structures of the M204-scFv monomer, dimer, and trimer revealed conformational differences that explain differences among these forms in binding and inhibition. The efficiency of M204-scFv antibodies to inhibit the seeding by brain tissue extracts from different donors with tauopathies varied among individuals, indicating the possible existence of distinct amyloid polymorphs. We propose that by binding to oligomers, which are hypothesized to be the earliest seeding-competent species, M204-scFv may have potential as an early-stage diagnostic for AD and tauopathies, and also could guide the development of promising therapeutic antibodies.


Assuntos
Doença de Alzheimer , Multimerização Proteica , Anticorpos de Cadeia Única/química , Proteínas tau/química , Cristalografia por Raios X , Humanos
6.
Phys Rev Lett ; 126(13): 133602, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861100

RESUMO

We present efficient evanescent coupling of single organic molecules to a gallium phosphide (GaP) subwavelength waveguide (nanoguide) decorated with microelectrodes. By monitoring their Stark shifts, we reveal that the coupled molecules experience fluctuating electric fields. We analyze the spectral dynamics of different molecules over a large range of optical powers in the nanoguide to show that these fluctuations are light-induced and local. A simple model is developed to explain our observations based on the optical activation of charges at an estimated mean density of 2.5×10^{22} m^{-3} in the GaP nanostructure. Our work showcases the potential of organic molecules as nanoscopic sensors of the electric charge as well as the use of GaP nanostructures for integrated quantum photonics.

7.
J Biol Chem ; 294(44): 16451-16464, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31537646

RESUMO

In Alzheimer's disease (AD) and tauopathies, tau aggregation accompanies progressive neurodegeneration. Aggregated tau appears to spread between adjacent neurons and adjacent brain regions by prion-like seeding. Hence, inhibitors of this seeding offer a possible route to managing tauopathies. Here, we report the 1.0 Å resolution micro-electron diffraction structure of an aggregation-prone segment of tau with the sequence SVQIVY, present in the cores of patient-derived fibrils from AD and tauopathies. This structure illuminates how distinct interfaces of the parent segment, containing the sequence VQIVYK, foster the formation of distinct structures. Peptide-based fibril-capping inhibitors designed to target the two VQIVYK interfaces blocked proteopathic seeding by patient-derived fibrils. These VQIVYK inhibitors add to a panel of tau-capping inhibitors that targets specific polymorphs of recombinant and patient-derived tau fibrils. Inhibition of seeding initiated by brain tissue extracts differed among donors with different tauopathies, suggesting that particular fibril polymorphs of tau are associated with certain tauopathies. Donors with progressive supranuclear palsy exhibited more variation in inhibitor sensitivity, suggesting that fibrils from these donors were more polymorphic and potentially vary within individual donor brains. Our results suggest that a subset of inhibitors from our panel could be specific for particular disease-associated polymorphs, whereas inhibitors that blocked seeding by extracts from all of the tauopathies tested could be used to broadly inhibit seeding by multiple disease-specific tau polymorphs. Moreover, we show that tau-capping inhibitors can be transiently expressed in HEK293 tau biosensor cells, indicating that nucleic acid-based vectors can be used for inhibitor delivery.


Assuntos
Doença de Alzheimer/metabolismo , Tauopatias/metabolismo , Proteínas tau/ultraestrutura , Encéfalo/metabolismo , Células HEK293 , Humanos , Neurônios/metabolismo , Príons/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo
8.
Nat Methods ; 14(4): 399-402, 2017 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28192420

RESUMO

Traditionally, crystallographic analysis of macromolecules has depended on large, well-ordered crystals, which often require significant effort to obtain. Even sizable crystals sometimes suffer from pathologies that render them inappropriate for high-resolution structure determination. Here we show that fragmentation of large, imperfect crystals into microcrystals or nanocrystals can provide a simple path for high-resolution structure determination by the cryoEM method MicroED and potentially by serial femtosecond crystallography.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia/métodos , Proteínas/química , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Proteica
9.
Phys Rev Lett ; 124(17): 173601, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412282

RESUMO

Optomechanical systems in the well-resolved-sideband regime are ideal for studying a myriad of quantum phenomena with mechanical systems, including backaction-evading measurements, mechanical squeezing, and nonclassical states generation. For these experiments, the mechanical oscillator should be prepared in its ground state, i.e., exhibit negligible residual excess motion compared to its zero-point motion. This can be achieved using the radiation pressure of laser light in the cavity by selectively driving the lower motional sideband, leading to sideband cooling. To date, the preparation of sideband-resolved optical systems to their zero-point energy has eluded laser cooling because of strong optical absorption heating. The alternative method of passive cooling suffers from the same problem, as the requisite milliKelvin environment is incompatible with the strong optical driving needed by many quantum protocols. Here, we employ a highly sideband-resolved silicon optomechanical crystal in a ^{3}He buffer-gas environment at ∼2 K to demonstrate laser sideband cooling to a mean thermal phonon occupancy of 0.09_{-0.01}^{+0.02} quantum (self-calibrated using motional sideband asymmetry), which is -7.4 dB of the oscillator's zero-point energy and corresponds to 92% ground state probability. Achieving such low occupancy by laser cooling opens the door to a wide range of quantum-optomechanical experiments in the optical domain.

10.
J Biol Chem ; 293(8): 2888-2902, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29282295

RESUMO

Amyloid-ß (Aß) and human islet amyloid polypeptide (hIAPP) aggregate to form amyloid fibrils that deposit in tissues and are associated with Alzheimer's disease (AD) and type II diabetes (T2D), respectively. Individuals with T2D have an increased risk of developing AD, and conversely, AD patients have an increased risk of developing T2D. Evidence suggests that this link between AD and T2D might originate from a structural similarity between aggregates of Aß and hIAPP. Using the cryoEM method microelectron diffraction, we determined the atomic structures of 11-residue segments from both Aß and hIAPP, termed Aß(24-34) WT and hIAPP(19-29) S20G, with 64% sequence similarity. We observed a high degree of structural similarity between their backbone atoms (0.96-Å root mean square deviation). Moreover, fibrils of these segments induced amyloid formation through self- and cross-seeding. Furthermore, inhibitors designed for one segment showed cross-efficacy for full-length Aß and hIAPP and reduced cytotoxicity of both proteins, although by apparently blocking different cytotoxic mechanisms. The similarity of the atomic structures of Aß(24-34) WT and hIAPP(19-29) S20G offers a molecular model for cross-seeding between Aß and hIAPP.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Emaranhados Neurofibrilares/metabolismo , Fragmentos de Peptídeos/metabolismo , Substituição de Aminoácidos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional , Cristalografia por Raios X , Desenho de Fármacos , Células HEK293 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/ultraestrutura , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Nootrópicos/química , Nootrópicos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/prevenção & controle , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
11.
Opt Express ; 24(13): 13850-65, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410548

RESUMO

We describe the design, fabrication, and characterization of a one-dimensional silicon photonic crystal cavity in which a central slot is used to enhance the overlap between highly localized optical and mechanical modes. The optical mode has an extremely small mode volume of 0.017(λvac / n)3, and an optomechanical vacuum coupling rate of 310 kHz is measured for a mechanical mode at 2.69 GHz. With optical quality factors up to 1.2 × 105, fabricated devices are in the resolved-sideband regime. The electric field has its maximum at the slot wall and couples to the in-plane breathing motion of the slot. The optomechanical coupling is thus dominated by the moving-boundary effect, which we simulate to be six times greater than the photoelastic effect, in contrast to most structures, where the photoelastic effect is often the primary coupling mechanism.

12.
Nat Chem Biol ; 9(11): 677-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995768

RESUMO

Although the Hsp90 chaperone family, comprised in humans of four paralogs, Hsp90α, Hsp90ß, Grp94 and Trap-1, has important roles in malignancy, the contribution of each paralog to the cancer phenotype is poorly understood. This is in large part because reagents to study paralog-specific functions in cancer cells have been unavailable. Here we combine compound library screening with structural and computational analyses to identify purine-based chemical tools that are specific for Hsp90 paralogs. We show that Grp94 selectivity is due to the insertion of these compounds into a new allosteric pocket. We use these tools to demonstrate that cancer cells use individual Hsp90 paralogs to regulate a client protein in a tumor-specific manner and in response to proteome alterations. Finally, we provide new mechanistic evidence explaining why selective Grp94 inhibition is particularly efficacious in certain breast cancers.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias/metabolismo , Purinas/farmacologia , Receptor ErbB-2/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias/patologia , Purinas/síntese química , Purinas/química , Relação Estrutura-Atividade
13.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464186

RESUMO

Alzheimer's disease (AD) is a common debilitating neurodegenerative disease with limited treatment options. Amyloid-ß (Aß) and tau fibrils are well-established hallmarks of AD, which can induce oxidative stress, neuronal cell death, and are linked to disease pathology. Here, we describe the effects of Oolonghomobisflavan A (OFA) and Oolonghomobisflavan B (OFB) on tau fibril disaggregation and prionogenic seeding. Transcriptomic analysis of OF-treated animals reveals the induction of a proteostasis-enhancing and health-promoting signature. OFA treatment reduced the burden of Tau protein aggregation in a C. elegans model expressing pathogenic human tau ("hTau-expressing") and promoted Tau disaggregation and inhibited seeding in assays using ex vivo brain-derived paired helical filament tau protein fibrils from Alzheimer's disease brain donors. Correspondingly, treatment with OF improved multiple fitness and aging-related health parameters in the hTau-expressing C. elegans model, including reproductive output, muscle function, and importantly, reversed the shortened lifespan stemming from pathogenic Tau expression. Collectively, this study provides new evidence supporting the neuroprotective effects of OFs and reveal a new therapeutic strategy for targeting AD and other neurodegenerative diseases characterized by tauopathy.

14.
Sci Adv ; 10(18): eadl2991, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691615

RESUMO

Amyloid fibrils of tau are increasingly accepted as a cause of neuronal death and brain atrophy in Alzheimer's disease (AD). Diminishing tau aggregation is a promising strategy in the search for efficacious AD therapeutics. Previously, our laboratory designed a six-residue, nonnatural amino acid inhibitor D-TLKIVW peptide (6-DP), which can prevent tau aggregation in vitro. However, it cannot block cell-to-cell transmission of tau aggregation. Here, we find D-TLKIVWC (7-DP), a d-cysteine extension of 6-DP, not only prevents tau aggregation but also fragments tau fibrils extracted from AD brains to neutralize their seeding ability and protect neuronal cells from tau-induced toxicity. To facilitate the transport of 7-DP across the blood-brain barrier, we conjugated it to magnetic nanoparticles (MNPs). The MNPs-DP complex retains the inhibition and fragmentation properties of 7-DP alone. Ten weeks of MNPs-DP treatment appear to reverse neurological deficits in the PS19 mouse model of AD. This work offers a direction for development of therapies to target tau fibrils.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Nanopartículas de Magnetita , Proteínas tau , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Proteínas tau/química , Camundongos , Humanos , Nanopartículas de Magnetita/química , Amiloide/metabolismo , Amiloide/química , Camundongos Transgênicos , Comportamento Animal/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Agregação Patológica de Proteínas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos
15.
Opt Express ; 21(26): 32468-83, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24514840

RESUMO

We describe the design, fabrication, and characterization of a 1-dimensional silicon photonic crystal cavity with a quality factor-to-mode volume ratio greater than 10(7), which exceeds the highest previous values by an order of magnitude. The maximum of the electric field is outside the silicon in a void formed by a central slot. An extremely small calculated mode volume of 0.0096 (λvac/n)(3) is achieved through the abrupt change of the electric field in the slot, despite which a high quality factor of 8.2 × 10(5) is predicted by simulation. Quality factors up to 1.4 × 10(5) are measured in actual devices. The observation of pronounced thermo-optic bistability is consistent with the strong confinement of light in these cavities.

16.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577523

RESUMO

Grp94 is the endoplasmic reticulum paralog of the hsp90 family of chaperones, which have been targeted for therapeutic intervention via their highly conserved ATP binding sites. The design of paralog-selective inhibitors relies on understanding the structural elements that mediate each paralog's response to inhibitor binding. Here, we determined the structures of Grp94 and Hsp90 in complex with the Grp94-selective inhibitor PU-H36, and of Grp94 with the non-selective inhibitor PU-H71. In Grp94, the 8-aryl moiety of PU-H36 is inserted into Site 2, a conditionally available side pocket, but in Hsp90 it occupies Site 1, a non-selective side pocket that is accessible in all hsp90 paralogs. The structure of Grp94 in complex with the non-selective PU-H71 shows only Site 1 binding. Large conformational shifts involving helices 1, 4 and 5 of the N-terminal domain of Grp94 are associated with the engagement of the Site 2 pocket for ligand binding. To understand the origins of Site 2 pocket engagement, we tested the binding of Grp94-selective ligands to chimeric Grp94/Hsp90 constructs. These studies show that helix 1 of the Grp94 N-terminal domain is the discriminating element that allows for remodeling of the ATP binding pocket and exposure of the Site 2 selective pocket.

17.
Nat Commun ; 14(1): 3499, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311746

RESUMO

The availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO3 electro-optic devices. Yet to date, LiNbO3 photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO3 requires a reliable solution with precise lithographic control. Here we demonstrate a heterogeneously integrated LiNbO3 photonic platform employing wafer-scale bonding of thin-film LiNbO3 to silicon nitride (Si3N4) photonic integrated circuits. The platform maintains the low propagation loss (<0.1 dB/cm) and efficient fiber-to-chip coupling (<2.5 dB per facet) of the Si3N4 waveguides and provides a link between passive Si3N4 circuits and electro-optic components with adiabatic mode converters experiencing insertion losses below 0.1 dB. Using this approach we demonstrate several key applications, thus providing a scalable, foundry-ready solution to complex LiNbO3 integrated photonic circuits.

18.
Chem Sci ; 14(40): 11022-11032, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37860661

RESUMO

Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.

19.
Nat Commun ; 14(1): 2379, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185252

RESUMO

The self-assembly of the Nucleocapsid protein (NCAP) of SARS-CoV-2 is crucial for its function. Computational analysis of the amino acid sequence of NCAP reveals low-complexity domains (LCDs) akin to LCDs in other proteins known to self-assemble as phase separation droplets and amyloid fibrils. Previous reports have described NCAP's propensity to phase-separate. Here we show that the central LCD of NCAP is capable of both, phase separation and amyloid formation. Within this central LCD we identified three adhesive segments and determined the atomic structure of the fibrils formed by each. Those structures guided the design of G12, a peptide that interferes with the self-assembly of NCAP and demonstrates antiviral activity in SARS-CoV-2 infected cells. Our work, therefore, demonstrates the amyloid form of the central LCD of NCAP and suggests that amyloidogenic segments of NCAP could be targeted for drug development.


Assuntos
Amiloide , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Amiloide/metabolismo , Proteínas Amiloidogênicas , Proteínas do Nucleocapsídeo , Peptídeos/química , Domínios Proteicos , SARS-CoV-2/metabolismo
20.
Nat Commun ; 13(1): 2065, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440549

RESUMO

Electrically actuated optomechanical resonators provide a route to quantum-coherent, bidirectional conversion of microwave and optical photons. Such devices could enable optical interconnection of quantum computers based on qubits operating at microwave frequencies. Here we present a platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits on an intrinsic silicon substrate. The devices exploit spatially extended, sideband-resolved mechanical breathing modes at ~3.2 GHz, with vacuum optomechanical coupling rates of up to g0/2π ≈ 300 kHz. The mechanical modes are driven by integrated microwave electrodes via the inverse piezoelectric effect. We estimate that the system could achieve an electromechanical coupling rate to a superconducting transmon qubit of ~200 kHz. Our work represents a decisive step towards integration of piezoelectro-optomechanical interfaces with superconducting quantum processors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA