Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562792

RESUMO

Zoonotic pathogens pose a significant risk to human health, with spillover into human populations contributing to chronic disease, sporadic epidemics, and occasional pandemics. Despite the widely recognized burden of zoonotic spillover, our ability to identify which animal populations serve as primary reservoirs for these pathogens remains incomplete. This challenge is compounded when prevalence reaches detectable levels only at specific times of year. In these cases, statistical models designed to predict the timing of peak prevalence could guide field sampling for active infections. Here we develop a general model that leverages routinely collected serosurveillance data to optimize sampling for elusive pathogens. Using simulated data sets we show that our methodology reliably identifies times when pathogen prevalence is expected to peak. We then apply our method to two putative Ebolavirus reservoirs, straw-colored fruit bats (Eidolon helvum) and hammer-headed bats (Hypsignathus monstrosus) to predict when these species should be sampled to maximize the probability of detecting active infections. In addition to guiding future sampling of these species, our method yields predictions for the times of year that are most likely to produce future spillover events. The generality and simplicity of our methodology make it broadly applicable to a wide range of putative reservoir species where seasonal patterns of birth lead to predictable, but potentially short-lived, pulses of pathogen prevalence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA