Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37710020

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Assuntos
Lista de Checagem , Editoração , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador , Microscopia
2.
Mod Pathol ; 36(4): 100088, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36788087

RESUMO

Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.


Assuntos
Medula Óssea , Hematologia , Humanos , Medula Óssea/patologia , Fluxo de Trabalho , Células da Medula Óssea/patologia , Exame de Medula Óssea
3.
Bioconjug Chem ; 32(3): 541-552, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33621057

RESUMO

Cells are powerful carriers that can help to improve the delivery of nanomedicines. One approach to use cells as carriers is to immobilize the nanoparticulate cargo on the cell surface. While a plethora of chemical conjugation strategies are available to bind nanoparticles to cell surfaces, only relatively little is known about the effects of particle size and cell type on the surface immobilization of nanoparticles. This study investigates the biotin-NeutrAvidin mediated immobilization of model polymer nanoparticles with sizes ranging from 40 nm to 1 µm on two different T cell lines, viz., human Jurkat cells as well as mouse SJL/PLP7 T cells, which are of potential interest for drug delivery across the blood-brain barrier. The nanoparticle cell surface immobilization and the particle surface concentration and distribution were analyzed by flow cytometry and confocal microscopy. The functional properties of nanoparticle-modified SJL/PLP7 T cells were assessed in an ICAM-1 binding assay as well as in a two-chamber setup in which the migration of the particle-modified T cells across an in vitro model of the blood-brain barrier was studied. The results of these experiments highlight the effects of particle size and cell line on the surface immobilization of nanoparticles on living cells.


Assuntos
Avidina/química , Biotina/química , Nanopartículas/química , Polímeros/química , Linfócitos T/química , Animais , Barreira Hematoencefálica , Humanos , Camundongos
4.
J Microsc ; 284(1): 56-73, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214188

RESUMO

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.


Assuntos
Microscopia , Padrões de Referência , Reprodutibilidade dos Testes
7.
Biomacromolecules ; 20(1): 231-242, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30395472

RESUMO

Cellular uptake and intracellular trafficking of polymer conjugates or polymer nanoparticles is typically monitored using fluorescence-based techniques such as confocal microscopy. While these methods have provided a wealth of insight into the internalization and trafficking of polymers and polymer nanoparticles, they require fluorescent labeling of the polymer or polymer nanoparticle. Because in biological media fluorescent dyes may degrade, be cleaved from the polymer or particle, or even change uptake and trafficking pathways, there is an interest in fluorescent label-free methods to study the interactions between cells and polymer nanomedicines. This article presents a first proof-of-concept that demonstrates the feasibility of NanoSIMS to monitor the intracellular localization of polymer conjugates. For the experiments reported here, poly( N-(2-hydroxypropyl) methacrylamide)) (PHPMA) was selected as a prototypical polymer-drug conjugate. This PHPMA polymer contained a 19F-label at the α-terminus, which was introduced in order to allow NanoSIMS analysis. Prior to the NanoSIMS experiments, the uptake and intracellular trafficking of the polymer was established using confocal microscopy and flow cytometry. These experiments not only provided detailed insight into the kinetics of these processes but were also important to select time points for the NanoSIMS analysis. For the NanoSIMS experiments, HeLa cells were investigated that had been exposed to the PHPMA polymer for a period of 4 or 15 h, which was known to lead to predominant lysosomal accumulation of the polymer. NanoSIMS analysis of resin-embedded and microtomed samples of the cells revealed a punctuated fluorine signal, which was found to colocalize with the sulfur signal that was attributed to the lysosomal compartments. The localization of the polymer in the endolysosomal compartments was confirmed by TEM analysis on the same cell samples. The results of this study illustrate the potential of NanoSIMS to study the uptake and intracellular trafficking of polymer nanomedicines.


Assuntos
Portadores de Fármacos/farmacologia , Endocitose , Ácidos Polimetacrílicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Endossomos/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Espectrometria de Massas
8.
Methods ; 115: 28-41, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28057586

RESUMO

Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The purpose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration and parametrization, while potentially facing demanding computational tasks. To make deconvolution more accessible, we have developed a practical platform for deconvolution microscopy called DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D microscopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage of the release of DeconvolutionLab2 to provide a complete description of the software package and its built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov-Miller, Richardson-Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D microscopy images using simulated datasets and real experimental images. We distinguish the algorithms in terms of image quality, performance, usability and computational requirements. Our presentation is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand Challenge on deconvolution microscopy that was recently organized.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Software , Algoritmos , Animais , Células Eucarióticas/ultraestrutura , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Microscopia Confocal/instrumentação , Microscopia de Fluorescência/instrumentação , Razão Sinal-Ruído
9.
J Immunol ; 194(3): 1154-63, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25548226

RESUMO

Infections with intestinal helminths severely impact on human and veterinary health, particularly through the damage that these large parasites inflict when migrating through host tissues. Host immunity often targets the motility of tissue-migrating helminth larvae, which ideally should be mimicked by anti-helminth vaccines. However, the mechanisms of larval trapping are still poorly defined. We have recently reported an important role for Abs in the rapid trapping of tissue-migrating larvae of the murine parasite Heligmosomoides polygyrus bakeri. Trapping was mediated by macrophages (MΦ) and involved complement, activating FcRs, and Arginase-1 (Arg1) activity. However, the receptors and Ab isotypes responsible for MΦ adherence and Arg1 induction remained unclear. Using an in vitro coculture assay of H. polygyrus bakeri larvae and bone marrow-derived MΦ, we now identify CD11b as the major complement receptor mediating MΦ adherence to the larval surface. However, larval immobilization was largely independent of CD11b and instead required the activating IgG receptor FcγRI (CD64) both in vitro and during challenge H. polygyrus bakeri infection in vivo. FcγRI signaling also contributed to the upregulation of MΦ Arg1 expression in vitro and in vivo. Finally, IgG2a/c was the major IgG subtype from early immune serum bound by FcγRI on the MΦ surface, and purified IgG2c could trigger larval immobilization and Arg1 expression in MΦ in vitro. Our findings reveal a novel role for IgG2a/c-FcγRI-driven MΦ activation in the efficient trapping of tissue-migrating helminth larvae and thus provide important mechanistic insights vital for anti-helminth vaccine development.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígeno CD11b/metabolismo , Helmintíase Animal/imunologia , Helmintíase Animal/metabolismo , Helmintos/imunologia , Receptores de IgG/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Expressão Gênica , Helmintíase Animal/genética , Soros Imunes/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interleucina-33 , Interleucinas/metabolismo , Larva , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos Knockout , Modelos Biológicos , Ligação Proteica , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Transdução de Sinais
10.
PLoS Pathog ; 9(11): e1003771, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244174

RESUMO

Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH (-/-)) or activating Fc receptors (FcRγ(-/-)) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Diferenciação Celular/imunologia , Macrófagos/imunologia , Nematospiroides dubius/imunologia , Receptores de Superfície Celular/imunologia , Infecções por Strongylida/imunologia , Animais , Anticorpos Anti-Helmínticos/genética , Arginase/genética , Arginase/imunologia , Diferenciação Celular/genética , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Larva , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Infecções por Strongylida/genética
11.
ArXiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824427

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.

12.
Adv Healthc Mater ; 10(2): e2001375, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33241667

RESUMO

Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof-of-concept that demonstrates the feasibility of activated effector/memory CD4+ helper T cells (CD4+ TEM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4+ TEM cells can be decorated with poly(ethylene glycol)-modified polystyrene nanoparticles using thiol-maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4+ TEM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle-modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts.


Assuntos
Barreira Hematoencefálica , Nanopartículas , Animais , Transporte Biológico , Sistemas de Liberação de Medicamentos , Camundongos , Polímeros , Linfócitos T
13.
Traffic ; 9(12): 2100-16, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18817527

RESUMO

The infection by Salmonella enterica results in the massive remodeling of the endosomal system of eukaryotic host cells. One unique consequence is the formation of long tubular endosomal compartments, so-called Salmonella-induced filaments (SIF). Formation of SIF requires the function of type III secretion system and is a requirement of efficient intracellular proliferation of Salmonella. Using high-resolution live cell imaging approaches and electron microscopy, we report for the first time the highly dynamic characteristics of SIF and their ultrastructural properties. In the early phase of infection (4-5 h), SIF display highly dynamic properties in various types of host cells. SIF extend, branch and contract rapidly, and a stabilized network of SIF is formed later (>or=8 h after infection). The velocities of SIF extension and contraction in the different phases of infection were quantified. Our observations lead to novel models for the modification of host cell transport processes by virulence factors of intracellular Salmonella.


Assuntos
Endossomos/metabolismo , Salmonella enterica/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular , Endossomos/ultraestrutura , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão
14.
J Gen Virol ; 91(Pt 6): 1524-34, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20147515

RESUMO

Gene m164 of murine cytomegalovirus belongs to the large group of 'private' genes that show no homology to those of other cytomegalovirus species and are thought to represent 'host adaptation' genes involved in virus-host interaction. Previous interest in the m164 gene product was based on the presence of an immunodominant CD8 T-cell epitope presented at the surface of infected cells, despite interference by viral immune-evasion proteins. Here, we provide data to reveal that the m164 gene product shows unusual features in its cell biology. A novel strategy of mass-spectrometric analysis was employed to map the N terminus of the mature protein, 107 aa downstream of the start site of the predicted open reading frame. The resulting 36.5 kDa m164 gene product is identified here as an integral type-I membrane glycoprotein with exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane with an outstandingly high lateral membrane motility, actually 100 times higher than those published for cellular ER-resident proteins. Notably, gp36.5/m164 does not contain any typical ER-retention/retrieval signals, such as the C-terminal motifs KKXX or KXKXX, and does not pass the Golgi apparatus. Instead, it belongs to the rare group of viral glycoproteins in which the transmembrane domain (TMD) itself mediates direct ER retention. This is the first report relating TMD usage of an ER-resident transmembrane protein to its lateral membrane motility as a paradigm in cell biology. We propose that TMD usage for ER retention facilitates free and fast floating in ER-related membranes and between ER subdomains.


Assuntos
Retículo Endoplasmático/química , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Muromegalovirus/fisiologia , Sinais Direcionadores de Proteínas , Proteínas Virais/metabolismo , Animais , Células COS , Chlorocebus aethiops , Glicoproteínas/química , Glicoproteínas/genética , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peso Molecular , Muromegalovirus/química , Muromegalovirus/genética , Fases de Leitura Aberta , Transporte Proteico , Proteínas Virais/química , Proteínas Virais/genética
15.
F1000Res ; 9: 1380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33976878

RESUMO

The number of grey values that can be displayed on monitors and be processed by the human eye is smaller than the dynamic range of image-based sensors. This makes the visualization of such data a challenge, especially with specimens where small dim structures are equally important as large bright ones, or whenever variations in intensity, such as non-homogeneous staining efficiencies or light depth penetration, becomes an issue. While simple intensity display mappings are easily possible, these fail to provide a one-shot observation that can display objects of varying intensities. In order to facilitate the visualization-based analysis of large volumetric datasets, we developed an easy-to-use ImageJ plugin enabling the compressed display of features within several magnitudes of intensities. The Display Enhancement for Visual Inspection of Large Stacks plugin (DEVILS) homogenizes the intensities by using a combination of local and global pixel operations to allow for high and low intensities to be visible simultaneously to the human eye. The plugin is based on a single, intuitively understandable parameter, features a preview mode, and uses parallelization to process multiple image planes. As output, the plugin is capable of producing a BigDataViewer-compatible dataset for fast visualization. We demonstrate the utility of the plugin for large volumetric image data.


Assuntos
Processamento de Imagem Assistida por Computador , Luz , Humanos
16.
Cell Host Microbe ; 27(2): 277-289.e6, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32053791

RESUMO

Hookworms cause a major neglected tropical disease, occurring after larvae penetrate the host skin. Neutrophils are phagocytes that kill large pathogens by releasing neutrophil extracellular traps (NETs), but whether they target hookworms during skin infection is unknown. Using a murine hookworm, Nippostrongylus brasiliensis, we observed neutrophils being rapidly recruited and deploying NETs around skin-penetrating larvae. Neutrophils depletion or NET inhibition altered larvae behavior and enhanced the number of adult worms following murine infection. Nevertheless, larvae were able to mitigate the effect of NETs by secreting a deoxyribonuclease (Nb-DNase II) to degrade the DNA backbone. Critically, neutrophils were able to kill larvae in vitro, which was enhanced by neutralizing Nb-DNase II. Homologs of Nb-DNase II are present in other nematodes, including the human hookworm, Necator americanus, which also evaded NETs in vitro. These findings highlight the importance of neutrophils in hookworm infection and a potential conserved mechanism of immune evasion.


Assuntos
Ancylostomatoidea/imunologia , Endodesoxirribonucleases/biossíntese , Armadilhas Extracelulares/metabolismo , Evasão da Resposta Imune , Animais , Interações Hospedeiro-Parasita , Camundongos , Neutrófilos/metabolismo , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia
17.
Methods Mol Biol ; 2040: 23-37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432473

RESUMO

Visiting the Bio Imaging Search Engine (BISE) (Bio, BISE, Engine, http://biii.eu/, Imaging, Search) website at the time of writing this article, almost 1200 open source assets (components, workflows, collections) were found. This overwhelming range of offer difficults the fact of making a reasonable choice, especially to newcomers. In the following chapter, we briefly sketch the advantages of the open source software (OSS) particularly used for image analysis in the field of life sciences. We introduce both the general OSS idea as well as some programs used for image analysis. Even more, we outline the history of ImageJ as it has served as a role model for the development of more recent software packages. We focus on the programs that are, to our knowledge, the most relevant and widely used in the field of light microscopy, as well as the most commonly used within our facility. In addition, we briefly discuss recent efforts and approaches aimed to share and compare algorithms and introduce software and data sharing good practices as a promising strategy to facilitate reproducibility, software understanding, and optimal software choice for a given scientific problem in the future.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Software , Algoritmos , Disciplinas das Ciências Biológicas/métodos , Disseminação de Informação , Reprodutibilidade dos Testes
18.
Front Neuroanat ; 13: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906253

RESUMO

Multi-user core microscopy facilities are often faced with the challenge to adapt or modify existing instruments. This is essential in order to fulfill the requirements of the user community, who wants to image a wide range of model organisms with varying stains and sample thicknesses. In recent years, lightsheet microscopy has turned into an invaluable tool for both live and cleared sample imaging of many different specimens. This brought up new challenges in terms of sample mounting as the classical approach of attachment onto a coverslip cannot be universally applied. Here we describe the development of a diversified holder which extends the range of samples which can be imaged on a Zeiss Lightsheet microscope Z1. We focus on mounting strategies of cleared specimens; however, the holder and mounting strategy can be applied to live specimens too. The proposed methodology provides very high flexibility along with numerous possibilities for adaptation based on imaging specimen size, condition and available clearing reagents. Moreover, the described mounting strategies can be applied to other light sheet microscopes that can mount 1 mL syringes.

19.
Methods Mol Biol ; 457: 193-201, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19066028

RESUMO

In this chapter the authors describe automated imaging methods to quantify the transport rates of transmembrane as well as soluble cargo, and to evaluate the integrity of the Golgi complex. The quantification of cargo transport rates serves as an example of fluorescence intensity-based assays, the quantification of the Golgi complex integrity--as an example of morphology-based assays. These quantitative assays could be applied for single experiments as well as for middle- and high-throughput screening approaches. Each of these assays can be used to appreciate effects caused by gene silencing by RNAi, cDNA overexpression or application of chemical compounds. For each assay the authors discuss protocols for sample preparation, parameters for automated image acquisition, strategies of image analysis, and data quantification.


Assuntos
Membrana Celular/metabolismo , Microscopia de Fluorescência/métodos , Via Secretória , Animais , Automação , Transporte Biológico , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3
20.
PLoS One ; 12(7): e0179752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746386

RESUMO

The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.


Assuntos
Rastreamento de Células/métodos , Microscopia de Fluorescência/métodos , Mitose , Imagem com Lapso de Tempo/métodos , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Reprodutibilidade dos Testes , Fuso Acromático , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA