Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 37(28): 6797-6809, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607171

RESUMO

Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-ß oligomers (AßOs). Although the impact of AßOs on neurons has been extensively studied, only recently have the possible effects of AßOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AßOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AßOs on synapses. We found that AßOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AßOs binding, and prevent AßO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-ß1 (TGF-ß1) antibody and siRNA-mediated knockdown of TGF-ß1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AßO-induced synapse loss. Notably, TGF-ß1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AßOs. Results suggest that astrocyte-derived TGF-ß1 is part of an endogenous mechanism that protects synapses against AßOs. By demonstrating that AßOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AßOs in AD.SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-ß oligomers (AßOs). Here, we investigated the impact of AßOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by AßOs, via production of transforming growth factor-ß1 (TGF-ß1). We found that AßOs trigger morphological and functional alterations in astrocytes, and impair their neuroprotective potential. Notably, TGF-ß1 reduced hippocampal dendritic spine loss and memory impairment in mice that received intracerebroventricular infusions of AßOs. Our results describe a new mechanism underlying the toxicity of AßOs and indicate novel therapeutic targets for Alzheimer's disease, mainly focused on TGF-ß1 and astrocytes.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Fator de Crescimento Transformador beta1/metabolismo , Peptídeos beta-Amiloides , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo
2.
J Biol Chem ; 292(18): 7395-7406, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302722

RESUMO

AMP-activated kinase (AMPK) is a key player in energy sensing and metabolic reprogramming under cellular energy restriction. Several studies have linked impaired AMPK function to peripheral metabolic diseases such as diabetes. However, the impact of neurological disorders, such as Alzheimer disease (AD), on AMPK function and downstream effects of altered AMPK activity on neuronal metabolism have been investigated only recently. Here, we report the impact of Aß oligomers (AßOs), synaptotoxins that accumulate in AD brains, on neuronal AMPK activity. Short-term exposure of cultured rat hippocampal neurons or ex vivo human cortical slices to AßOs transiently decreased intracellular ATP levels and AMPK activity, as evaluated by its phosphorylation at threonine residue 172 (AMPK-Thr(P)172). The AßO-dependent reduction in AMPK-Thr(P)172 levels was mediated by glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype and resulted in removal of glucose transporters (GLUTs) from the surfaces of dendritic processes in hippocampal neurons. Importantly, insulin prevented the AßO-induced inhibition of AMPK. Our results establish a novel toxic impact of AßOs on neuronal metabolism and suggest that AßO-induced, NMDA receptor-mediated AMPK inhibition may play a key role in early brain metabolic defects in AD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipocampo/patologia , Humanos , Insulina/farmacologia , Neurônios/patologia , Fragmentos de Peptídeos/genética , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
3.
PLoS One ; 5(12): e15230, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21179577

RESUMO

Brain accumulation of the amyloid-ß peptide (Aß) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimer's disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between Aß-induced oxidative stress and HK activity. We found that Aß triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. Aß oligomers further impair energy metabolism by decreasing neuronal ATP levels. Aß-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked Aß-induced oxidative stress and neuronal death. Results suggest that Aß-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Neurônios/enzimologia , Animais , Sobrevivência Celular , Citosol/metabolismo , Desoxiglucose/farmacologia , Humanos , Isoenzimas/química , Neurônios/citologia , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA