RESUMO
SecA is an ATP-dependent molecular motor pumping secretory and outer membrane proteins across the cytoplasmic membrane in bacteria. SecA associates with the protein-conducting channel, the heterotrimeric SecYEG complex, in a so-called posttranslational manner. A recent study further showed binding of a monomeric state of SecA to the ribosome. However, the true oligomeric state of SecA remains controversial because SecA can also form functional dimers, and high-resolution crystal structures exist for both the monomer and the dimer. Here we present the cryo-electron microscopy structures of Escherichia coli SecA bound to the ribosome. We show that not only a monomeric SecA binds to the ribosome but also that two copies of SecA can be observed that form an elongated dimer. Two copies of SecA completely surround the tunnel exit, providing a unique environment to the nascent polypeptides emerging from the ribosome. We identified the N-terminal helix of SecA required for a stable association with the ribosome. The structures indicate a possible function of the dimeric form of SecA at the ribosome.
Assuntos
Adenosina Trifosfatases/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Proteínas de Membrana Transportadoras/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Simulação por Computador , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Ribossômicas Maiores de Bactérias/química , Canais de Translocação SEC , Proteínas SecARESUMO
Three orthogonal techniques were used to provide new insights into thermally induced aggregation of the therapeutic protein Somatropin at pH 5.8 and 7.0. The techniques were Dynamic Light Scattering (DLS), Asymmetric Flow-Field Flow-Fractionation (AF4), and the TEM-based analysis system MiniTEM™. In addition, Differential Scanning Calorimetry (DSC) was used to study the thermal unfolding and stability. DSC and DLS were used to explain the initial aggregation process and aggregation rate at the two pH values. The results suggest that less electrostatic stabilization seems to be the main reason for the faster initial aggregation at pH 5.8, i.e., closer to the isoelectric point of Somatropin. AF4 and MiniTEM were used to investigate the aggregation pathway further. Combining the results allowed us to demonstrate Somatropin's thermal aggregation pathway at pH 7.0. The growth of the aggregates appears to follow two steps. Smaller elongated aggregates are formed in the first step, possibly initiated by partly unfolded species. In the second step, occurring during longer heating, the smaller aggregates assemble into larger aggregates with more complex structures.
Assuntos
Hormônio do Crescimento Humano , Difusão Dinâmica da Luz , Varredura Diferencial de CalorimetriaRESUMO
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD), and currently one of the most promising therapeutic targets for drug design in Parkinson's disease. In contrast, LRRK1, the closest homologue to LRRK2, does not play any role in PD. Here, we use cryo-electron microscopy (cryo-EM) and single particle analysis to gain structural insight into the full-length dimeric structures of LRRK2 and LRRK1. Differential scanning fluorimetry-based screening of purification buffers showed that elution of the purified LRRK2 protein in a high pH buffer is beneficial in obtaining high quality cryo-EM images. Next, analysis of the 3D maps generated from the cryo-EM data show 16 and 25 Å resolution structures of full length LRRK2 and LRRK1, respectively, revealing the overall shape of the dimers with two-fold symmetric orientations of the protomers that is closely similar between the two proteins. These results suggest that dimerization mechanisms of both LRRKs are closely related and hence that specificities in functions of each LRRK are likely derived from LRRK2 and LRRK1's other biochemical functions. To our knowledge, this study is the first to provide 3D structural insights in LRRK2 and LRRK1 dimers in parallel.