Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(6): 703-715, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972349

RESUMO

Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Cálcio/metabolismo , Células HEK293 , Staphylococcus aureus Resistente à Meticilina/metabolismo , Sinalização do Cálcio , Inflamação/tratamento farmacológico , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia
2.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555749

RESUMO

Gastrointestinal disease is prevalent and broad, manifesting itself in a variety of ways, including inflammation, fibrosis, infection, and cancer. However, historically, diagnostic technologies have exhibited limitations, especially with regard to diagnostic uncertainty. Despite development of newly emerging technologies such as optoacoustic imaging, many recent advancements have focused on improving upon pre-existing modalities such as ultrasound, computed tomography, magnetic resonance imaging, and endoscopy. These advancements include utilization of machine learning models, biomarkers, new technological applications such as diffusion weighted imaging, and new techniques such as transrectal ultrasound. This review discusses assessment of disease processes using imaging strategies for the detection and monitoring of inflammation, fibrosis, and cancer in the context of gastrointestinal disease. Specifically, we include ulcerative colitis, Crohn's disease, diverticulitis, celiac disease, graft vs. host disease, intestinal fibrosis, colorectal stricture, gastric cancer, and colorectal cancer. We address some of the most recent and promising advancements for improvement of gastrointestinal imaging, including unique discussions of such advancements with regard to imaging of fibrosis and differentiation between similar disease processes.


Assuntos
Gastroenteropatias , Neoplasias , Humanos , Inflamação/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética/métodos , Gastroenteropatias/diagnóstico por imagem , Endoscopia Gastrointestinal/métodos , Fibrose
3.
Front Endocrinol (Lausanne) ; 14: 1217875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37800138

RESUMO

Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to hundreds of millions of adults, especially in developed countries. Each condition is associated with an elevated risk of breast cancer and with a poor prognosis after treatment. The mechanisms connecting poor metabolic health to breast cancer are numerous and include hyperinsulinemia, inflammation, excess nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose tissue, highlighting important roles for both adipocytes and fibroblasts in breast cancer progression. One potentially important mediator of adipose tissue effects on breast cancer is the fibroblast growth factor receptor (FGFR) signaling network. Among the many roles of FGFR signaling, we postulate that key mechanisms driving aggressive breast cancer include epithelial-to-mesenchymal transition and cellular metabolic reprogramming. We also pose existing questions that may help better understand breast cancer biology in people with obesity, type 2 diabetes, and poor metabolic health.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Neoplasias da Mama/metabolismo , Diabetes Mellitus Tipo 2/complicações , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA