Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 150(3): 523-534, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36075638

RESUMO

Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.


Assuntos
Microbioma Gastrointestinal , Microbiota , Aleitamento Materno , Feminino , Humanos , Lactente , Fórmulas Infantis , Leite Humano
2.
Appl Environ Microbiol ; 85(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737347

RESUMO

Bifidobacteria are commensals of the animal gut and are commonly found in mammals, birds, and social insects. Specifically, strains of Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium pseudolongum are widely distributed in the mammalian gut. In this context, we investigated the genetic variability and metabolic abilities of the B. pseudolongum taxon, whose genomic characterization has so far not received much attention. Phylogenomic analysis of the genome sequences of 60 B. pseudolongum strains revealed that B. pseudolongum subsp. globosum and B. pseudolongum subsp. pseudolongum may actually represent two distinct bifidobacterial species. Furthermore, our analysis highlighted metabolic differences between members of these two subspecies. Moreover, comparative analyses of genetic strategies to prevent invasion of foreign DNA revealed that the B. pseudolongum subsp. globosum group exhibits greater genome plasticity. In fact, the obtained findings indicate that B. pseudolongum subsp. globosum is more adaptable to different ecological niches such as the mammalian and avian gut than is B. pseudolongum subsp. pseudolongumIMPORTANCE Currently, little information exists on the genetics of the B. pseudolongum taxon due to the limited number of sequenced genomes belonging to this species. In order to survey genome variability within this species and explore how members of this taxon evolved as commensals of the animal gut, we isolated and decoded the genomes of 51 newly isolated strains. Comparative genomics coupled with growth profiles on different carbohydrates has further provided insights concerning the genotype and phenotype of members of the B. pseudolongum taxon.


Assuntos
Bifidobacterium/genética , Microbioma Gastrointestinal/genética , Variação Genética , Genoma Bacteriano , Genômica , Animais , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Bifidobacterium/metabolismo , Bifidobacterium longum/genética , DNA Bacteriano/genética , Ecossistema , Microbioma Gastrointestinal/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , Simbiose
3.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30171008

RESUMO

Fermented vegetables are highly popular internationally in part due to their enhanced nutritional properties, cultural history, and desirable sensorial properties. In some instances, fermented foods provide a rich source of the beneficial microbial communities that could promote gastrointestinal health. The indigenous microbiota that colonize fermentation facilities may impact food quality, food safety, and spoilage risks and maintain the nutritive value of the product. Here, microbiomes within sauerkraut production facilities were profiled to characterize variance across surfaces and to determine the sources of these bacteria. Accordingly, we used high-throughput sequencing of the 16S rRNA gene in combination with whole-genome shotgun analyses to explore biogeographical patterns of microbial diversity and assembly within the production facility. Our results indicate that raw cabbage and vegetable handling surfaces exhibit more similar microbiomes relative to the fermentation room, processing area, and dry storage surfaces. We identified biomarker bacterial phyla and families that are likely to originate from the raw cabbage and vegetable handling surfaces. Raw cabbage was identified as the main source of bacteria to seed the facility, with human handling contributing a minor source of inoculation. Leuconostoc and Lactobacillaceae dominated all surfaces where spontaneous fermentation occurs, as these taxa are associated with the process. Wall, floor, ceiling, and barrel surfaces host unique microbial signatures. This study demonstrates that diverse bacterial communities are widely distributed within the production facility and that these communities assemble nonrandomly, depending on the surface type.IMPORTANCE Fermented vegetables play a major role in global food systems and are widely consumed by various global cultures. In this study, we investigated an industrial facility that produces spontaneous fermented sauerkraut without the aid of starter cultures. This provides a unique system to explore and track the origins of an "in-house" microbiome in an industrial environment. Raw vegetables and the surfaces on which they are handled were identified as the likely source of bacterial communities rather than human contamination. As fermented vegetables increase in popularity on a global scale, understanding their production environment may help maintain quality and safety goals.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Manipulação de Alimentos/instrumentação , Microbiota , Verduras/microbiologia , Bactérias/classificação , Bactérias/genética , Brassica/metabolismo , Brassica/microbiologia , DNA Bacteriano/genética , Fermentação , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Verduras/metabolismo
5.
Int J Food Sci Nutr ; 69(2): 155-164, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28683582

RESUMO

AIM: To investigate whether microencapsulation of Lactobacillus in alginate microbeads will lead to increased longevity during refrigerated storage or simulated digestion. MATERIALS AND METHODS: Microscopy was used to confirm that Lactobacillus plantarum ATCC BAA-793 and Lactobacillus johnsonii ATCC 33200 were immobilised within the microbeads and laser scattering analysis was used to determine the mean diameter of the microbeads. The number of viable cells were enumerated throughout refrigerated storage and simulated digestion experiments. RESULTS: Microencapsulation was shown to have differing effects on viability depending on the species, but led to extended viability during refrigerated storage and simulated digestion in L. johnsonii and L. plantarum respectively. CONCLUSION: Fermented functional foods contain microbes beneficial to human health. However, extended shelf storage and the harsh environment of the GI tract significantly reduces the number of viable microbes reaching the consumer. Microencapsulation allows beneficial microbes to reach the gut of the consumer in higher numbers, and thus confer greater health benefits.


Assuntos
Alginatos/química , Digestão , Aditivos Alimentares/química , Lactobacillus johnsonii/crescimento & desenvolvimento , Lactobacillus plantarum/crescimento & desenvolvimento , Modelos Biológicos , Probióticos , Alginatos/ultraestrutura , Células Imobilizadas/ultraestrutura , Alimentos Fermentados/microbiologia , Armazenamento de Alimentos , Géis , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Lactobacillus johnsonii/ultraestrutura , Lactobacillus plantarum/ultraestrutura , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Microesferas , Nefelometria e Turbidimetria , Tamanho da Partícula , Probióticos/química , Refrigeração , Especificidade da Espécie , Propriedades de Superfície
6.
Appl Environ Microbiol ; 83(17)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667113

RESUMO

Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a ß-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.

7.
Pediatr Res ; 79(3): 445-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26571226

RESUMO

BACKGROUND: The ingestion of probiotics to attempt to improve health is increasingly common; however, quality control of some commercial products can be limited. Clinical practice is shifting toward the routine use of probiotics to aid in prevention of necrotizing enterocolitis in premature infants, and probiotic administration to term infants is increasingly common to treat colic and/or prevent atopic disease. Since bifidobacteria dominate the feces of healthy breast-fed infants, they are often included in infant-targeted probiotics. METHODS: We evaluated 16 probiotic products to determine how well their label claims describe the species of detectable bifidobacteria in the product. Recently developed DNA-based methods were used as a primary means of identification, and were confirmed using culture-based techniques. RESULTS: We found that the contents of many bifidobacterial probiotic products differ from the ingredient list, sometimes at a subspecies level. Only 1 of the 16 probiotics perfectly matched its bifidobacterial label claims in all samples tested, and both pill-to-pill and lot-to-lot variation were observed. CONCLUSION: Given the known differences between various bifidobacterial species and subspecies in metabolic capacity and colonization abilities, the prevalence of misidentified bifidobacteria in these products is cause for concern for those involved in clinical trials and consumers of probiotic products.


Assuntos
Técnicas de Tipagem Bacteriana , Bifidobacterium/genética , Enterocolite Necrosante/prevenção & controle , Probióticos/uso terapêutico , Bifidobacterium/classificação , DNA Bacteriano/análise , Fezes/microbiologia , Genoma Bacteriano , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Analyst ; 141(3): 1009-16, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26689710

RESUMO

The application of bacteriophage combined with the use of magnetic separation techniques has emerged as a valuable tool for the sensitive identification and detection of bacteria. In this study, bacteriophage T7 labelled magnetic beads were developed for the detection of viable bacterial cells. Fusion of the biotin acceptor peptide (BAP) with the phage capsid protein gene and the insertion of the biotin ligase (BirA) gene enabled the display of the BAP ligand and the expression protein BirA during the replication cycle of phage infection. The replicated Escherichia coli specific bacteriophage was biotinylated in vivo and coated on magnetic beads via streptavidin-biotin interaction. Immobilization efficiency of the recombinant phage was investigated on magnetic beads and the phage-bead complex was evaluated by detecting E. coli from inoculated broth. When compared to the wild type phage, the recombinant phage T7birA-bap had a high immobilization density on streptavidin-coated magnetic beads and could capture 86.2% of E. coli cells from broth within 20 min. As this phage-based biomagnetic detection approach provided a low detection limit of 10(2) CFU mL(-1) without pre-enrichment, we believe this assay could be further developed to detect other bacteria of interest by applying host-specific phages. This would be of particular use in detecting bacteria which are difficult to grow or replicate slowly in culture.


Assuntos
Bacteriófagos/química , Técnicas Biossensoriais/métodos , Escherichia coli/isolamento & purificação , Limite de Detecção , Fenômenos Magnéticos , Viabilidade Microbiana , Bacteriófagos/genética , Biotinilação , DNA Recombinante/genética , Escherichia coli/fisiologia , Engenharia Genética
9.
Analyst ; 141(19): 5543-8, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27412402

RESUMO

A large fraction of foodborne illnesses are linked to (∼46%) leafy green vegetables contaminated by pathogens harbored in agricultural water. To prevent this, accurate point-of-production detection tools are required to identify and quantify bacterial contaminants in produce before consumers are impacted. In this study, a proof-of-concept model was engineered for a phage-based Escherichia coli detection system. We engineered the coliphage T7 to express alkaline phosphatase (ALP) to serve as the signal for E. coli detection. Wild type phoA (T7ALP) and a dominant-active allele, phoA D153G D330N (T7ALP*) was inserted into the T7 genome, with engineered constructs selected by CRISPR-mediated cleavage of unaltered chromosomes and confirmed by PCR. Engineered phages and E. coli target cells were co-incubated for 16 hours to produce lysates with liberated ALP correlated with input cell concentrations. A colorimetric assay used p-nitrophenyl phosphate (pNPP) to demonstrate significant ALP production by T7ALP and T7ALP* compared to the vector control (T7EV) (p≤ 0.05). Furthermore, T7ALP* produced 2.5-fold more signal than T7ALP (p≤ 0.05) at pH 10. Due to the increase in signal for the modified ALP* allele, we assessed T7ALP* sensitivity in a dose-responsive manner. We observed 3-fold higher signal for target cell populations as low as ∼2 × 10(5) CFU mL(-1) (p≤ 0.05 vs. no-phage control).


Assuntos
Fosfatase Alcalina/química , Bacteriófago T7/genética , Escherichia coli/isolamento & purificação , Engenharia Genética , Fosfatase Alcalina/genética , Sistemas CRISPR-Cas , Contaminação de Alimentos/análise
10.
Anal Bioanal Chem ; 408(15): 4169-78, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27071764

RESUMO

Escherichia coli O157:H7 is a ubiquitous pathogen which can be linked to foodborne outbreaks worldwide. In addition to the significant illnesses, hospitalizations, and deaths resulting from the outbreaks, there can be severe economic consequences to farmers, food manufacturers, and municipalities. A rapid detection assay which can validate sanitation and water quality would prove beneficial to these situations. Here, we report a novel bacteriophage-mediated detection of E. coli O157:H7 which utilizes the specific recognition between phages and their host cell as well as the natural lysis component of the infection cycle for DNA release. Carboxylic acid-functionalized magnetic beads were conjugated with bacteriophage and used to separate and concentrate E. coli O157:H7. The effects of bead incubation time, salinity, pH, and temperature on the bio-magnetic separation were investigated and compared to an antibody-based counterpart. The conditions of 0.01 M PBS, pH 7.0, and 20 min of reaction at 37 °C were found to be optimal. The capture efficiency of the coupled assay was approximately 20 % higher than that of antibody-based separation under extreme conditions. The resulting bead-phage-bacteria complexes were quantitatively detected by real-time PCR (qPCR). Our results demonstrated that the use of phage-based magnetic separation coupled with qPCR improved the sensitivity of detection by 2 orders of magnitude compared that without phage-based pre-concentration. Specificity and selectivity of the assay system was evaluated, and no cross-reactivity occurred when Salmonella typhimurium, Staphylococcus aureus, and Pseudomonas aeruginosa were tested. The total assay time was less than 2 h.


Assuntos
Bacteriófagos/fisiologia , Escherichia coli O157/isolamento & purificação , Água Doce/microbiologia , Separação Imunomagnética/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonella typhimurium/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Bacteriófagos/química , Escherichia coli O157/química , Escherichia coli O157/genética , Escherichia coli O157/virologia , Separação Imunomagnética/instrumentação , Salmonella typhimurium/química , Salmonella typhimurium/genética , Salmonella typhimurium/virologia , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/virologia
11.
Microorganisms ; 12(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38792709

RESUMO

Bifidobacterium infantis are the primary colonizers of the infant gut, yet scientific research addressing the transmission of the genus Bifidobacterium to infants remains incomplete. This review examines microbial reservoirs of infant-type Bifidobacterium that potentially contribute to infant gut colonization. Accordingly, strain inheritance from mother to infant via the fecal-oral route is likely contingent on the bifidobacterial strain and phenotype, whereas transmission via the vaginal microbiota may be restricted to Bifidobacterium breve. Additional reservoirs include breastmilk, horizontal transfer from the environment, and potentially in utero transfer. Given that diet is a strong predictor of Bifidobacterium colonization in early life and the absence of Bifidobacterium is observed regardless of breastfeeding, it is likely that additional factors are responsible for bifidobacterial colonization early in life.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38574248

RESUMO

Background and Aims: Cannabigerol (CBG) is a nonintoxicating cannabinoid synthesized in the Cannabis sativa plant that is incorporated into dietary supplements. This study investigated the influence of dietary fat and an emulsified delivery vehicle on CBG pharmacokinetics (PKs) after oral ingestion by adults. Materials and Methods: Consented participants were enrolled in a double-crossover pilot study and were blinded to the delivery vehicle type (isolate or emulsification) and isocaloric meal condition (low-fat=<5 g fat/meal or high-fat [HF]=>30 g fat/meal). The concentration of CBG in human plasma was measured after a single 25 mg dose of CBG using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PK parameters were calculated using noncompartmental analysis. Results: The PKs of the two delivery systems (emulsified vs. non-emulsified) were significantly impacted by the HF meal condition. Participants in the HF meal group exhibited significantly higher area under the plasma concentration time curve from time 0 to last quantifiable value, maximum concentration, and terminal half-life. Participants in the HF meal group also had a significantly lower terminal elimination rate constant and time to maximum concentration (Tmax), in addition to decreased Tmax variation. The threshold for bioequivalence between conditions was not met. An exploratory aim correlated anthropometric measures and previous day's dietary intake on PK parameters which yielded inconsistent results across dietary fat conditions. Conclusions: In aggregate, dietary fat had a greater effect on CBG PKs than the emulsified delivery vehicle. This supports accounting for dietary intake in development of therapeutics and administration guidelines for orally delivered CBG.

13.
Foods ; 12(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37628115

RESUMO

Kombucha is a fermented tea beverage consumed for its probiotics and functional properties. It has a unique sensory profile driven by the properties of tea polyphenols and fermentation products, including organic acids. Fermentation temperature and sucrose content affect the fermentation process and the production of organic acids; yet less is known about their impacts on the sensory profile and consumer acceptance. Thus, we aimed to examine the impact of sucrose concentration and fermentation temperature on sensory attributes and liking. For this study, kombucha tea was fermented at three different concentrations of sucrose and fermented at two temperatures for 11 days. Fermentation was monitored by pH, brix, and titratable acidity, and consumers (n = 111) evaluated the kombucha for sensory attributes and overall liking. The fermentation temperature resulted in significant differences in titratable acidity, with higher temperatures producing more organic acids, resulting in higher astringency, and suppressed sweetness. The lower fermentation was reported as significantly more liked, with no difference in liking between the 7.5% and 10% sucrose kombucha samples. Fermentation temperature had the greatest impact on the sensory profile rather than sucrose concentration, which had a greater effect on the fermentation rate and production organic acids.

14.
Gut Microbes ; 15(2): 2244721, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609905

RESUMO

Bifidobacterium longum subsp. infantis (B. infantis) utilizes oligosaccharides secreted in human milk as a carbohydrate source. These human milk oligosaccharides (HMOs) integrate the nitrogenous residue N-acetylglucosamine (NAG), although HMO nitrogen utilization has not been described to date. Herein, we characterize the B. infantis nitrogen utilization phenotype on two NAG-containing HMO species, LNT and LNnT. This was characterized through in vitro growth kinetics, incorporation of isotopically labeled NAG nitrogen into the proteome, as well as modulation of intracellular 2-oxoglutarate levels while utilizing HMO nitrogen. Further support is provided by comparative transcriptomics and proteomics that identified global regulatory networks deployed during HMO nitrogen utilization. The aggregate data demonstrate that B. infantis strains utilize HMO nitrogen with the potential to significantly impact fundamental and clinical studies, as well as enable applications.


Assuntos
Bifidobacterium longum subspecies infantis , Microbioma Gastrointestinal , Humanos , Acetilglucosamina , Leite Humano , Oligossacarídeos , Nitrogênio
15.
Gut Microbes ; 15(1): 2192546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967532

RESUMO

Human milk guides the structure and function of microbial commensal communities that colonize the nursing infant gut. Indigestible molecules dissolved in human milk establish a microbiome often dominated by bifidobacteria capable of utilizing these substrates. Interestingly, urea accounts for ~15% of total human milk nitrogen, representing a potential reservoir for microbiota that may be salvaged for critical metabolic operations during lactation and neonatal development. Accordingly, B. infantis strains are competent for urea nitrogen utilization, constituting a previously hypothetical phenotype in commensal bacteria hosted by humans. Urease gene expression, downstream nitrogen metabolic pathways, and enzymatic activity are induced during urea utilization to yield elevated ammonia concentrations. Moreover, biosynthetic networks relevant to infant nutrition and development are transcriptionally responsive to urea utilization including branched chain and other essential amino acids. Importantly, isotopically labeled urea nitrogen is broadly distributed throughout the expressed B. infantis proteome. This incisively demonstrates that the previously inaccessible urea nitrogen is incorporated into microbial products available for infant host utilization. In aggregate, B. infantis possesses the requisite phenotypic foundation to participate in human milk urea nitrogen recycling within its infant host and thus may be a key contributor to nitrogen homeostasis early in life.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Recém-Nascido , Feminino , Lactente , Humanos , Leite Humano/química , Ureia/análise , Ureia/metabolismo , Oligossacarídeos/metabolismo , Bifidobacterium longum subspecies infantis
16.
Curr Dev Nutr ; 7(10): 101972, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37786751

RESUMO

Cannabidiol (CBD) is a non-intoxicating cannabinoid extracted from the cannabis plant that is used for medicinal purposes. Ingestion of CBD is claimed to address several pathologies, including gastrointestinal disorders, although limited evidence has been generated thus far to substantiate many of its health claims. Nevertheless, CBD usage as an over-the-counter treatment for gastrointestinal disorders is likely to expand in response to increasing commercial availability, permissive legal status, and acceptance by consumers. This systematic review critically evaluates the knowledge boundaries of the published research on CBD, intestinal motility, and intestinal motility disorders. Research on CBD and intestinal motility is currently limited but does support the safety and efficacy of CBD for several therapeutic applications, including seizure disorders, inflammatory responses, and upper gastrointestinal dysfunction (i.e., nausea and vomiting). CBD, therefore, may have therapeutic potential for addressing functional gastrointestinal disorders. The results of this review show promising in vitro and preclinical data supporting a role of CBD in intestinal motility. This includes improved gastrointestinal-related outcomes in murine models of colitis. These studies, however, vary by dose, delivery method, and CBD-extract composition. Clinical trials have yet to find a conclusive benefit of CBD on intestinal motility disorders, but these trials have been limited in scope. In addition, critical factors such as CBD dosing parameters have not yet been established. Further research will establish the efficacy of CBD in applications to address intestinal motility.

17.
Mol Nutr Food Res ; 67(11): e2200851, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938958

RESUMO

SCOPE: Fucosylated human milk oligosaccharides (fHMOs) are metabolized by Bifidobacterium infantis and promote syntrophic interactions between microbiota that colonize the infant gut. The role of fHMO structure on syntrophic interactions and net microbiome function is not yet fully understood. METHODS AND RESULTS: Metabolite production and microbial populations are tracked during mono- and co-culture fermentations of 2'fucosyllactose (2'FL) and difucosyllactose (DFL) by two B. infantis strains and Eubacterium hallii. This is also conducted in an in vitro modeled microbiome supplemented by B. infantis and/or E. hallii. Metabolites are quantified by high performance liquid chromatography. Total B. infantis and E. hallii populations are quantified through qRT-PCR and community composition through 16S amplicon sequencing. Differential metabolism of 2'FL and DFL by B. infantis strains gives rise to strain- and fHMO structure-specific syntrophy with E. hallii. Within the modeled microbial community, fHMO structure does not strongly alter metabolite production in aggregate, potentially due to functional redundancy within the modeled community. In contrast, community composition is dependent on fHMO structure. CONCLUSION: Whereas short chain fatty acid production is not significantly altered by the specific fHMO structure introduced to the modeled community, specific fHMO structure influences the composition of the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Humanos , Lactente , Leite Humano/química , Bifidobacterium longum subspecies infantis/metabolismo , Oligossacarídeos/metabolismo
18.
Am J Clin Nutr ; 117 Suppl 1: S28-S42, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37173059

RESUMO

Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.


Assuntos
Aleitamento Materno , Leite Humano , Feminino , Lactente , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente
19.
J Biol Chem ; 286(14): 11909-18, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21288901

RESUMO

Lactating mothers secrete milk sialyloligosaccharides (MSOs) that function as anti-adhesives once provided to the neonate. Particular infant-associated commensals, such as Bifidobacterium longum subsp. infantis, consume neutral milk oligosaccharides, although their ability to utilize acidic oligosaccharides has not been assessed. Temporal glycoprofiling of acidic HMO consumed during fermentation demonstrated a single composition, with several isomers, corresponding to sialylated lacto-N-tetraose. To utilize MSO, B. longum subsp. infantis deploys a sialidase that cleaves α2-6 and α2-3 linkages. NanH2, encoded within the HMO catabolic cluster is up-regulated during HMO fermentation and is active on sialylated lacto-N-tetraose. These results demonstrate that commensal microorganisms do utilize MSO, a substrate that may be enriched in the distal gastrointestinal tract.


Assuntos
Bifidobacterium/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/enzimologia , Humanos , Espectrometria de Massas , Leite Humano/química , Neuraminidase/genética , Neuraminidase/metabolismo , Oligossacarídeos/química
20.
Appl Environ Microbiol ; 78(3): 795-803, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138995

RESUMO

Bifidobacterium longum subsp. infantis ATCC 15697 utilizes several small-mass neutral human milk oligosaccharides (HMOs), several of which are fucosylated. Whereas previous studies focused on endpoint consumption, a temporal glycan consumption profile revealed a time-dependent effect. Specifically, among preferred HMOs, tetraose was favored early in fermentation, with other oligosaccharides consumed slightly later. In order to utilize fucosylated oligosaccharides, ATCC 15697 possesses several fucosidases, implicating GH29 and GH95 α-L-fucosidases in a gene cluster dedicated to HMO metabolism. Evaluation of the biochemical kinetics demonstrated that ATCC 15697 expresses three fucosidases with a high turnover rate. Moreover, several ATCC 15697 fucosidases are active on the linkages inherent to the HMO molecule. Finally, the HMO cluster GH29 α-L-fucosidase possesses a crystal structure that is similar to previously characterized fucosidases.


Assuntos
Bifidobacterium/enzimologia , Leite Humano/química , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , Bifidobacterium/química , Bifidobacterium/genética , Bifidobacterium/metabolismo , Cristalografia por Raios X , Fermentação , Perfilação da Expressão Gênica , Genes Bacterianos , Humanos , Cinética , Modelos Moleculares , Família Multigênica , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA