Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 48(5): 198-210, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35726510

RESUMO

OBJECTIVE: Patient acceptance of pediatric formulations is critical to compliance and consequently therapeutic outcomes; thus, having an in vitro method to evaluate sensory perception of pharmaceutical products would be beneficial. The objective of this research is to develop a sensitive and reproducible tribological method to characterize pharmaceutical suspensions at low force and sliding speeds. METHODS: The discriminating potential of the method was examined using tribology profiles (coefficient of friction (COF) vs. sliding speed) for commercially available products and products made for this study with widely varying sweetness, thickness, and grittiness; these formulations were used to judge the sensitivity of the method. Samples were measured using 3M Transpore™ surgical tape to simulate the tongue surface, steel half ring geometry, constant gap setting, target axial force of 2 N in a 600 s exponential ramp for rotation speed. RESULTS: The COF ranged from 0.1 to 0.6. For the speeds studied, the high viscosity commercial suspension ibuprofen drops and acetaminophen suspension show a classic Stribeck curve with an increasing COF at the higher rotation speeds, which indicates these formulations entered the hydrodynamic lubrication phase, while the lower viscosity suspensions only reached the mixed lubrication phase. CONCLUSION: The contribution of particles affects the COF in a dynamic tribologic pattern compared to products that are categorized as either low gritty or high viscosity. These results are important as they provide a potentially rapid in vitro method for screening pediatric medications and help to identify the factors that affect the palatability of pediatric formulations.


Assuntos
Composição de Medicamentos , Suspensões , Criança , Fricção , Humanos , Lubrificação , Viscosidade
2.
AAPS PharmSciTech ; 21(5): 172, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533366

RESUMO

Dissolution testing and solubility determinations in different biorelevant media have gained considerable interest in the pharmaceutical industry from early-stage development of new products to forecasting bioequivalence. Among all biorelevant fluids, the preparation of fed-state simulated gastric fluid (FeSSGF) and handling of samples from dissolution/solubility testing in FeSSGF is considered to be relatively challenging. Challenges include maintaining the stability of FeSSGF medium upon sampling, filtration, and mitigating analytical interference of excipients and milk components. To overcome these challenges, standard and uniform working practices are required that are not only helpful in preparation of stable FeSSGF but also serve as a harmonizing guide for the collection of dissolution/solubility samples and their subsequent processing (i.e., handling and assay). The optimization of sample preparation methodology is crucial to reduce method-related variance by ensuring specificity, robustness, and reproducibility with acceptable recovery of the analytes. The sample preparation methodology includes a combination of techniques including filtration, solvent treatment, and centrifugation to remove the interfering media-related components and excipients from the analyte. The analytes of interest were chromatographically separated from the interfering analytes to quantify the drug concentration using the new high-performance liquid chromatography methods with ultraviolet detection. The methods developed allow rapid sample preparation, acceptable specificity, reproducible recoveries (greater than 95% of label claim), and quantification of study drugs (ibuprofen and ketoconazole). The sample preparation technique and method considerations provided here for ibuprofen and ketoconazole can serve as a starting point for solubility and dissolution testing of other small molecules in FeSSGF.


Assuntos
Desenvolvimento de Medicamentos/métodos , Ácido Gástrico/metabolismo , Ibuprofeno/metabolismo , Cetoconazol/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Ibuprofeno/química , Cetoconazol/química , Reprodutibilidade dos Testes , Solubilidade , Comprimidos
3.
AAPS PharmSciTech ; 18(2): 317-329, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27796909

RESUMO

The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.


Assuntos
Digestão/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Trato Gastrointestinal/metabolismo , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/metabolismo , Administração Oral , Ácidos e Sais Biliares/metabolismo , Química Farmacêutica/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Pediatria , Solubilidade
4.
Pharm Dev Technol ; 18(6): 1407-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23136844

RESUMO

The potential of UV imaging as a new small scale flow-through dissolution testing platform and its ability to incorporate biorelevant media was tested. Furosemide was utilized as a model poorly soluble drug, and dissolution media simulating conditions in the small intestine (5/1.25 mM and 40/10 mM bile salt/phospholipid, pH 6.5) together with corresponding blank buffer were employed. Dissolution rates as a function of flow rate (0.2-1.0 mL/min) were determined directly from UV images, and by analysis of collected effluent using UV spectrophotometry. A good agreement in dissolution rates was observed, however repeatability of data based on measurement of collected effluent was superior to that obtained by UV imaging in the utilized prototypic flow cell. Both methods indicated that biorelevant media did not markedly increase the dissolution rate of furosemide as compared to buffer. Qualitatively, UV images indicated that uncontrolled swelling/precipitation of furosemide on the compact surface was occurring in some samples. In situ Raman spectroscopy together with X-ray diffraction analysis confirmed that the observations were not due to a solid form transformation of furosemide. The presented results highlight the complementary features of the utilized techniques and, in particular, the detailed information related to dissolution behavior which can be achieved by UV imaging.


Assuntos
Furosemida/química , Soluções Tampão , Solubilidade , Espectrofotometria Ultravioleta/métodos , Análise Espectral Raman/métodos , Tecnologia Farmacêutica/métodos , Difração de Raios X/métodos
5.
Eur J Pharm Sci ; 162: 105828, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819625

RESUMO

To increase the understanding of how drugs behave following oral administration to the pediatric population, the aim of the present study was to investigate the solubilization of fluconazole and ibuprofen during simulated gastro-intestinal (GI) digestion, using an immediate transfer model mimicking pediatric GI digestion. The effects of infant formula and digestion, on the drug solubilization, were studied using simulated fasted and fed state digestion media in the presence and absence of digestive enzymes. Additionally, the effect of digestion media viscosity on the solubilization process was investigated. It was found that the solubilization of fluconazole was unaffected by all tested parameters, as the entire estimated dose equivalent was solubilized in the aqueous phase throughout all digestion studies. In contrast, the solubilization of ibuprofen was affected by all the tested parameters, i.e. in the fasted state, the solubilization of ibuprofen was limited by its solubility in the aqueous phase of the simulated GI digestion media, whereas the solubilization in the fed state was affected by drug partitioning between the lipid and the aqueous phases, and therefore by the digestion of the lipid phase. Adding Nestlé Thicken Up™, containing xanthan gum as a thickening agent, to the digestion medium increased its viscosity, which in turn resulted in a reduced initial digestion rate, increased pH fluctuations, as well as high variability in all drug solubilization data as evident in large standard deviations. Furthermore, the increased digestion medium viscosity decreased the drug recovery from the combined pellet and aqueous phase. The observed viscosity effects might translate into a more variable and lower oral bioavailability.


Assuntos
Preparações Farmacêuticas , Administração Oral , Disponibilidade Biológica , Criança , Digestão , Humanos , Solubilidade
6.
Eur J Pharm Biopharm ; 164: 66-74, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878434

RESUMO

A pediatric formulation workshop entitled "Pediatric Formulations: Challenges of Today and Strategies for Tomorrow" was held to advance pediatric drug product development efforts in both pre-competitive and competitive environments. The workshop had four main sessions discussing key considerations of Formulation, Analytical, Clinical and Regulatory. This paper focuses on the clinical session of the workshop. It provides an overview of the discussion on the interconnection of pediatric formulation design and development, clinical development strategy and pediatric clinical pharmacology. The success of pediatric drug product development requires collaboration of multi-disciplinary teams across the pharmaceutical industry, consortiums, foundations, academia and global regulatory agencies. Early strategic planning is essential to ensure alignment among major stakeholders of different functional teams. Such an alignment is particularly critical in the collaboration between formulators and clinical pharmacology teams.


Assuntos
Desenvolvimento de Medicamentos/métodos , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Criança , Indústria Farmacêutica/métodos , Humanos , Farmacologia Clínica/métodos
7.
Eur J Pharm Biopharm ; 164: 54-65, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33878432

RESUMO

A workshop on "Pediatric Formulation Development: Challenges of Today and Strategies for Tomorrow" was organized jointly by the University of Maryland's Center of Excellence in Regulatory Science and Innovation (M-CERSI), the U.S. Food and Drug Administration (FDA) and the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) Drug Product Pediatric Working Group (PWG). This multi-disciplinary, pediatric focused workshop was held over a two-day period (18-19 Jun 2019) and consisted of participants from industry, regulatory agencies, academia and other organizations from both US and Europe. The workshop consisted of sequential sessions on formulation, analytical, clinical, and regulatory and industry lessons learned and future landscape. Each session began with a series of short framing presentations, followed by facilitated breakout sessions and panel discussion. The formulation session was dedicated to three main topics pertaining to drug product acceptability, excipients in pediatrics and oral administration device considerations. The analytical session discussed key considerations for dosing vehicle selection and analytical strategies for testing of different dosage forms, specifically mini-tablets (multiparticulates). The clinical session highlighted the influence of pediatric pharmacokinetics prediction on formulation design, pediatric drug development strategies and clinical considerations to support pediatric formulation design. The regulatory and industry lessons learned and future landscape session explored the regional differences that exist in regulatory expectations, requirements for pediatric formulation development, and key patient-centric factors to consider when developing novel pediatric formulations. This session also discussed potential collaboration opportunities and tools for pediatric formulation development. This manuscript summarizes the key discussions and outcomes of all the sessions in the workshop with a broadened review and discussion of the topics that were covered.


Assuntos
Desenvolvimento de Medicamentos/métodos , Preparações Farmacêuticas/química , Comprimidos/química , Química Farmacêutica/métodos , Criança , Excipientes/química , Humanos , Pediatria/métodos
8.
AAPS J ; 22(5): 97, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719954

RESUMO

Decision-making in drug development benefits from an integrated systems approach, where the stakeholders identify and address the critical questions for the system through carefully designed and performed studies. Biopharmaceutics Risk Assessment Roadmap (BioRAM) is such a systems approach for application of systems thinking to patient focused and timely decision-making, suitable for all stages of drug discovery and development. We described the BioRAM therapy-driven drug delivery framework, strategic roadmap, and integrated risk assessment instrument (BioRAM Scoring Grid) in previous publications (J Pharm Sci 103:3377-97, 2014; J Pharm Sci 105:3243-55, 2016). Integration of systems thinking with pharmaceutical development, manufacturing, and clinical sciences and health care is unique to BioRAM where the developed strategy identifies the system and enables risk characterization and balancing for the entire system. Successful decision-making process in BioRAM starts with the Blueprint (BP) meetings. Through shared understanding of the system, the program strategy is developed and captured in the program BP. Here, we provide three semi-hypothetical examples for illustrating risk-based decision-making in high and moderate risk settings. In the high-risk setting, which is a rare disease area, two completely alternate development approaches are considered (gene therapy and small molecule). The two moderate-risk examples represent varied knowledge levels and drivers for the programs. In one moderate-risk example, knowledge leveraging opportunities are drawn from the manufacturing knowledge and clinical performance of a similar drug substance. In the other example, knowledge on acute tolerance patterns for a similar mechanistic pathway is utilized for identifying markers to inform the drug release profile from the dosage form with the necessary "flexibility" for dosing. All examples illustrate implementation of the BioRAM strategy for leveraging knowledge and decision-making to optimize the clinical performance of drug products for patient benefit.


Assuntos
Biofarmácia , Análise de Sistemas , Tomada de Decisões , Medição de Risco
9.
ACS Omega ; 5(51): 32939-32950, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403255

RESUMO

Furosemide is a widely used diuretic for treating excessive fluid accumulation caused by disease conditions like heart failure and liver cirrhosis. Furosemide tablet formulation exhibits variable pharmacokinetics (PK) with bioavailability ranging from 10 to almost 100%. To explain the variable absorption, we integrated the physicochemical, in vitro dissolution, permeability, distribution, and the elimination parameters of furosemide in a physiologically-based pharmacokinetic (PBPK) model. Although the intravenous PBPK model reasonably described the observed in vivo PK data, the reported low passive permeability failed to capture the observed data after oral administration. To mechanistically justify this discrepancy, we hypothesized that transporter-mediated uptake contributes to the oral absorption of furosemide in conjunction with passive permeability. Our in vitro results confirmed that furosemide is a substrate of intestinal breast cancer resistance protein (BCRP), multidrug resistance-associated protein 4 (MRP4), and organic anion transporting polypeptide 2B1 (OATP2B1), but it is not a substrate of P-glycoprotein (P-gp) and MRP2. We then estimated the net transporter-mediated intestinal uptake and integrated it into the PBPK model under both fasting and fed conditions. Our in vitro data and PBPK model suggest that the absorption of furosemide is permeability-limited, and OATP2B1 and MRP4 are important for its permeability across intestinal membrane. Further, as furosemide has been proposed as a probe substrate of renal organic anion transporters (OATs) for assessing clinical drug-drug interactions (DDIs) during drug development, the confounding effects of intestinal transporters identified in this study on furosemide PK should be considered in the clinical transporter DDI studies.

11.
Eur J Pharm Sci ; 109: 191-199, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28803922

RESUMO

OBJECTIVE: The aim of the present study was to study the oral performance of furosemide in neonates and young infants using a newly developed in vitro model simulating digestion and drug solubilization in the gastrointestinal (GI) tract of the human neonate and young infant population (age 0-2months). METHODS: The utilized in vitro model was designed to mimic the digestion and drug solubilization processes occurring in the stomach, and the small intestine of the neonate and young infant population, using physiologically relevant media, volumes and digestive enzymes. Overall the experimental model setup was based on the dynamic in vitro lipolysis model previously described by Fernandez et al. (2009). The amount of furosemide solubilized in the aqueous phase during a digestion study was used as an estimate for the amount of drug available for absorption in vivo. By varying different factors in the model setup, e.g. presence of food (food-effect), effect of digestion (tested with and without addition of digestive enzymes), and properties of the dosage form, it was possible to estimate the importance of these factors in vivo. KEY FINDINGS AND CONCLUSIONS: The present in vitro data suggest that the oral performance of furosemide in neonates and young infants will be increased by the presence of food (frequent feedings) due to increased drug solubilization, however, not influenced by the GI digestion of this food. The properties of the dosage form (immediate release tablets) did not affect the drug solubilization as compared to administration of the pure drug powder.


Assuntos
Diuréticos/metabolismo , Furosemida/metabolismo , Mucosa Gástrica/metabolismo , Intestino Delgado/metabolismo , Modelos Biológicos , Digestão , Diuréticos/química , Jejum/metabolismo , Interações Alimento-Droga , Furosemida/química , Humanos , Concentração de Íons de Hidrogênio , Lactente , Recém-Nascido , Pós , Solubilidade , Estômago/química , Comprimidos
12.
Clin Ther ; 28(9): 1385-98, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17062311

RESUMO

BACKGROUND: Profound changes in the development and the maturation of neonates' organs and organ systems over variable periods of time potentially place neonates at increased risk and/or at different risks compared with adults or older children on exposure to pharmaceutical agents. Most studies of drugs in neonates focus on pharmacokinetic and pharmacodynamic end points and include insufficient numbers of patients to permit evaluation of safety. Only one fourth to one third of approved drugs have received adequate pediatric study to permit labeling for treatment of all appropriate pediatric populations. OBJECTIVE: The initial goal of the Newborn Drug Prioritization Group was to develop a reproducible, objective process for evaluating drugs most in need of study in the neonatal population based on a universally acceptable priority ranking. The criteria would be applicable across therapeutic classes and would identify those drugs for which immediate study was most needed. METHODS: Because the therapeutic requirements of the neonate are unique in comparison to older infants and children, the National Institute of Child Health and Human Development and the US Food and Drug Administration (FDA) developed the Newborn Drug Development Initiative to address the limited study of off-patent drugs in newborns. In March 2003, they convened a meeting of pediatric pharmacologists and pediatric specialists from the FDA, the American Academy of Pediatrics, the National Institutes of Health, and academic institutions to discuss how to increase the study of drugs for the newborn. One of the working groups was charged to develop generic criteria for overall prioritization of drugs for study in newborns. Because resources are limited, and not all drugs identified by the 4 clinically focused working groups can receive study at the same time, a process for priority ranking is necessary. RESULTS: The panel identified 4 general categories containing different numbers of criteria as important for ranking drugs for priority investigation: (1) the disease and indication, including elements such as the potential for adverse outcomes, frequency in newborns, and level of evidence for treatment of newborns; (2) drug characteristics, including elements such as duration of dosing, lack of age-appropriate formulation, clinically relevant drug-drug and drug-disease interactions, and drug disposition in newborns; (3) feasibility and methodology for newborn studies, including both analytical considerations and clinical end points; and (4) the ethical basis for study, including elements to address benefit or harm due to exposure to the study drug, study methodology, and benefit of the new treatment relative to established standard therapy. Based on these categories, a list of criteria to warrant study of a drug in newborns was developed. CONCLUSION: A process for judicious use of limited resources to rectify these deficiencies remains an urgent public health need.


Assuntos
Ensaios Clínicos como Assunto/normas , Avaliação de Medicamentos/métodos , Doenças do Recém-Nascido/tratamento farmacológico , Animais , Conferências de Consenso como Assunto , Humanos , Recém-Nascido , Guias de Prática Clínica como Assunto , Estados Unidos , United States Food and Drug Administration
13.
J Pharm Sci ; 105(11): 3243-3255, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27659159

RESUMO

The aim of Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid is to facilitate optimization of clinical performance of drug products. BioRAM strategy relies on therapy-driven drug delivery and follows an integrated systems approach for formulating and addressing critical questions and decision-making (J Pharm Sci. 2014,103(11): 3777-97). In BioRAM, risk is defined as not achieving the intended in vivo drug product performance, and success is assessed by time to decision-making and action. Emphasis on time to decision-making and time to action highlights the value of well-formulated critical questions and well-designed and conducted integrated studies. This commentary describes and illustrates application of the BioRAM Scoring Grid, a companion to the BioRAM strategy, which guides implementation of such an integrated strategy encompassing 12 critical areas and 6 assessment stages. Application of the BioRAM Scoring Grid is illustrated using published literature. Organizational considerations for implementing BioRAM strategy, including the interactions, function, and skillsets of the BioRAM group members, are also reviewed. As a creative and innovative systems approach, we believe that BioRAM is going to have a broad-reaching impact, influencing drug development and leading to unique collaborations influencing how we learn, and leverage and share knowledge.


Assuntos
Biofarmácia/normas , Descoberta de Drogas/normas , Preparações Farmacêuticas/normas , Pesquisa Translacional Biomédica/normas , Biofarmácia/métodos , Química Farmacêutica/métodos , Química Farmacêutica/normas , Tomada de Decisões , Descoberta de Drogas/métodos , Humanos , Preparações Farmacêuticas/química , Medição de Risco/métodos , Medição de Risco/normas , Pesquisa Translacional Biomédica/métodos
14.
J Pharm Pharmacol ; 67(5): 651-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644429

RESUMO

OBJECTIVES: To develop a physiologically based pharmacokinetic (PBPK) model for furosemide immediate release (IR) tablets and modified release (MR) capsules by coupling biorelevant dissolution testing results with pharmacokinetic (PK) and physiologic parameters, and to investigate the key factors influencing furosemide absorption using simulation approaches and the PBPK model. METHODS: Using solubility, dissolution kinetics, gastrointestinal (GI) parameters and disposition parameters, a PBPK model for furosemide was developed with STELLA software. Solubility and dissolution profiles for both formulations were evaluated in biorelevant and compendial media. The simulated plasma profiles were compared with in-vivo profiles using point estimates of area under plasma concentration-time curve, maximal concentration after the dose and time to maximal concentration after the dose. KEY FINDINGS: Simulated plasma profiles of both furosemide IR tablets and MR capsules were similar to the observed in-vivo profile in terms of PK parameters. Sensitivity analysis of the IR tablet model indicated that both the gastric emptying and absorption rate have an influence on the plasma profile. For the MR capsules, the sensitivity analysis suggested that the release rate in the small intestine, gastric emptying and the absorption rate all have an influence on the plasma profile. CONCLUSIONS: A predictive model to describe both IR and MR dosage forms containing furosemide was attained. Because sensitivity analysis of the model is able to identify key factors influencing the plasma profile, this in-vitro-in-silico-in-vivo approach could be a useful tool for facilitating formulation development of drug products.


Assuntos
Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Furosemida/administração & dosagem , Furosemida/farmacocinética , Modelos Biológicos , Administração Oral , Simulação por Computador , Preparações de Ação Retardada/administração & dosagem , Humanos , Técnicas In Vitro , Comprimidos
15.
J Pharm Sci ; 103(11): 3377-3397, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25256402

RESUMO

The biopharmaceutics risk assessment roadmap (BioRAM) optimizes drug product development and performance by using therapy-driven target drug delivery profiles as a framework to achieve the desired therapeutic outcome. Hence, clinical relevance is directly built into early formulation development. Biopharmaceutics tools are used to identify and address potential challenges to optimize the drug product for patient benefit. For illustration, BioRAM is applied to four relatively common therapy-driven drug delivery scenarios: rapid therapeutic onset, multiphasic delivery, delayed therapeutic onset, and maintenance of target exposure. BioRAM considers the therapeutic target with the drug substance characteristics and enables collection of critical knowledge for development of a dosage form that can perform consistently for meeting the patient's needs. Accordingly, the key factors are identified and in vitro, in vivo, and in silico modeling and simulation techniques are used to elucidate the optimal drug delivery rate and pattern. BioRAM enables (1) feasibility assessment for the dosage form, (2) development and conduct of appropriate "learning and confirming" studies, (3) transparency in decision-making, (4) assurance of drug product quality during lifecycle management, and (5) development of robust linkages between the desired clinical outcome and the necessary product quality attributes for inclusion in the quality target product profile.


Assuntos
Biofarmácia , Descoberta de Drogas/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Preparações Farmacêuticas/química , Animais , Biofarmácia/normas , Química Farmacêutica , Simulação por Computador , Preparações de Ação Retardada , Portadores de Fármacos , Descoberta de Drogas/normas , Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Humanos , Modelos Teóricos , Preparações Farmacêuticas/administração & dosagem , Farmacocinética , Controle de Qualidade , Medição de Risco , Fatores de Risco , Testes de Toxicidade
16.
J Pharm Sci ; 102(9): 3205-19, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23696038

RESUMO

One of the most prominent food-drug interactions is the inhibition of intestinal cytochrome P450 (CYP) 3A enzymes by grapefruit juice ingredients, and, as many drugs are metabolized via CYP 3A, this interaction can be of clinical importance. Calcium channel-blocking agents of the dihydropyridine type, such as felodipine and nifedipine, are subject to extensive intestinal first pass metabolism via CYP 3A, thus resulting in significantly enhanced in vivo exposure of the drug when administered together with grapefruit juice. Physiologically based pharmacokinetic (PBPK) modeling was used to simulate pharmacokinetics of a nifedipine immediate release formulation following concomitant grapefruit juice ingestion, that is, after inhibition of small intestinal CYP 3A enzymes. For this purpose, detailed data about CYP 3A levels were collected from the literature and implemented into commercial PBPK software. As literature reports show that grapefruit juice (i) leads to a marked delay in gastric emptying, and (ii) rapidly lowers the levels of intestinal CYP 3A enzymes, inhibition of intestinal first pass metabolism following ingestion of grapefruit juice was simulated by altering the intestinal CYP 3A enzyme levels and simultaneously decelerating the gastric emptying rate. To estimate the in vivo dispersion and dissolution behavior of the formulation, dissolution tests in several media simulating both the fasted and fed state stomach and small intestine were conducted, and the results from the in vitro dissolution tests were used as input function to describe the in vivo dissolution of the drug. Plasma concentration-time profiles of the nifedipine immediate release formulation both with and without simultaneous CYP 3A inhibition were simulated, and the results were compared with data gathered from the literature. Using this approach, nifedipine plasma profiles could be simulated well both with and without enzyme inhibition. A reduction in small intestinal CYP 3A levels by 60% was found to yield the best results, with simulated nifedipine concentration-time profiles within 20% of the in vivo observed results. By additionally varying the dissolution input of the PBPK model, a link between the dissolution characteristics of the formulation and its in vivo performance could be established.


Assuntos
Bloqueadores dos Canais de Cálcio/sangue , Bloqueadores dos Canais de Cálcio/metabolismo , Citrus paradisi , Interações Alimento-Droga , Nifedipino/sangue , Nifedipino/metabolismo , Bebidas/análise , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/química , Citrus paradisi/metabolismo , Simulação por Computador , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A , Humanos , Modelos Biológicos , Nifedipino/administração & dosagem , Nifedipino/química , Solubilidade
17.
Eur J Pharm Biopharm ; 85(3 Pt B): 942-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24075980

RESUMO

Amorphous forms of furosemide sodium salt and furosemide free acid were prepared by spray drying. For the preparation of the amorphous free acid, methanol was utilised as the solvent, whereas the amorphous sodium salt was formed from a sodium hydroxide-containing aqueous solvent in equimolar amounts of NaOH and furosemide. Information about the structural differences between the two amorphous forms was obtained by Fourier Transform Infrared Spectroscopy (FTIR), and glass transition temperature (Tg) was determined using Differential Scanning Calorimetry (DSC). The stability and devitrification tendency of the two amorphous forms were investigated by X-ray Powder Diffraction (XRPD). The apparent solubility of the two amorphous forms and the crystalline free acid form of furosemide in various gastric and intestinal stimulated media was determined. Moreover, the dissolution characteristics of the two amorphous forms and of crystalline free acid were investigated. FTIR confirmed molecular differences between the amorphous free acid and salt. The amorphous salt showed a Tg of 101.2 °C, whereas the Tg for the amorphous free acid was found to be 61.8 °C. The amorphous free acid was physically stable for 4 days at 22 °C and 33% relative humidity (RH), while the amorphous salt exhibited physical stability for 291 days at the same storage conditions. When storing the amorphous forms at 40 °C and 75% RH both forms converted to crystalline forms after 2 days. The apparent solubility of the amorphous salt form was higher than that of both amorphous and crystalline free acid in all media studied. All three forms of furosemide exhibited a greater solubility in the presence of biorelevant media as compared to buffer, however, an overall trend for a further increase in solubility in relation to an increase in media surfactant concentration was not seen. The amorphous salt demonstrated an 8- and 20-fold higher intrinsic dissolution rate (IDR) when compared to amorphous and crystalline free acid, respectively. The promising properties of the amorphous salt in vitro were further evaluated in an in vivo study, where solid dosage forms of the amorphous salt, amorphous and crystalline free acid and a solution of furosemide were administered orally to rats. The amorphous salt exhibited a significantly faster Tmax compared to the solution and amorphous and crystalline free acid. Cmax for the solution was significantly higher compared to the three furosemide forms. No significant difference was found in AUC and absolute bioavailability for the solution, crystalline free acid and the two amorphous forms of furosemide. It can be concluded that the higher IDR and higher apparent solubility of the amorphous salt resulted in a faster Tmax compared to the amorphous and crystalline free acid.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Furosemida/administração & dosagem , Furosemida/química , Sódio/administração & dosagem , Sódio/química , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Cristalização , Dessecação , Estabilidade de Medicamentos , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição , Água/química , Difração de Raios X
19.
AAPS J ; 12(3): 465-72, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20517660

RESUMO

A biopharmaceutics and Quality by Design (QbD) conference was held on June 10-12, 2009 in Rockville, Maryland, USA to provide a forum and identify approaches for enhancing product quality for patient benefit. Presentations concerned the current biopharmaceutical toolbox (i.e., in vitro, in silico, pre-clinical, in vivo, and statistical approaches), as well as case studies, and reflections on new paradigms. Plenary and breakout session discussions evaluated the current state and envisioned a future state that more effectively integrates QbD and biopharmaceutics. Breakout groups discussed the following four topics: Integrating Biopharmaceutical Assessment into the QbD Paradigm, Predictive Statistical Tools, Predictive Mechanistic Tools, and Predictive Analytical Tools. Nine priority areas, further described in this report, were identified for advancing integration of biopharmaceutics and support a more fundamentally based, integrated approach to setting product dissolution/release acceptance criteria. Collaboration among a broad range of disciplines and fostering a knowledge sharing environment that places the patient's needs as the focus of drug development, consistent with science- and risk-based spirit of QbD, were identified as key components of the path forward.


Assuntos
Produtos Biológicos , Solubilidade
20.
Pediatrics ; 121(3): 530-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310202

RESUMO

OBJECTIVE: The goal was to review the impact of pediatric drug studies, as measured by the improvement in pediatric dosing and other pertinent information captured in the drug labeling. METHODS: We reviewed the pediatric studies for 108 products submitted (July 1998 through October 2005) in response to a Food and Drug Administration written request for pediatric studies, and the subsequent labeling changes. We analyzed the dosing modifications and focused on drug clearance as an important parameter influencing pediatric dosing. RESULTS: The first 108 drugs with new or revised pediatric labeling changes had dosing changes or pharmacokinetic information (n = 23), new safety information (n = 34), information concerning lack of efficacy (n = 19), new pediatric formulations (n = 12), and extended age limits (n = 77). A product might have had > or = 1 labeling change. We selected specific examples (n = 16) that illustrate significant differences in pediatric pharmacokinetics. CONCLUSIONS: Critical changes in drug labeling for pediatric patients illustrate that unique pediatric dosing often is necessary, reflecting growth and maturational stages of pediatric patients. These changes provide evidence that pediatric dosing should not be determined by simply applying weight-based calculations to the adult dose. Drug clearance is highly variable in the pediatric population and is not readily predictable on the basis of adult information.


Assuntos
Rotulagem de Medicamentos/normas , Estudos de Avaliação como Assunto , Pediatria/normas , Preparações Farmacêuticas/administração & dosagem , Administração Oral , Adolescente , Fatores Etários , Disponibilidade Biológica , Superfície Corporal , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Esquema de Medicação , Avaliação de Medicamentos , Rotulagem de Medicamentos/legislação & jurisprudência , Feminino , Previsões , Meia-Vida , Humanos , Lactente , Masculino , Dose Máxima Tolerável , Sistema de Registros , Sensibilidade e Especificidade , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA