Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Theor Appl Genet ; 135(8): 2747-2767, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35737008

RESUMO

KEY MESSAGE: This study performed comprehensive analyses on the predictive abilities of single-trait and two multi-trait models in three populations. Our results demonstrated the superiority of multi-traits over single-trait models across seven agronomic and four to seven disease resistance traits of different genetic architecture. The predictive ability of multi-trait and single-trait prediction models has not been investigated on diverse traits evaluated under organic and conventional management systems. Here, we compared the predictive abilities of 25% of a testing set that has not been evaluated for a single trait (ST), not evaluated for multi-traits (MT1), and evaluated for some traits but not others (MT2) in three spring wheat populations genotyped either with the wheat 90K single nucleotide polymorphisms array or DArTseq. Analyses were performed on seven agronomic traits evaluated under conventional and organic management systems, four to seven disease resistance traits, and all agronomic and disease resistance traits simultaneously. The average prediction accuracies of the ST, MT1, and MT2 models varied from 0.03 to 0.78 (mean 0.41), from 0.05 to 0.82 (mean 0.47), and from 0.05 to 0.92 (mean 0.67), respectively. The predictive ability of the MT2 model was significantly greater than the ST model in all traits and populations except common bunt with the MT1 model being intermediate between them. The MT2 model increased prediction accuracies over the ST and MT1 models in all traits by 9.0-82.4% (mean 37.3%) and 2.9-82.5% (mean 25.7%), respectively, except common bunt that showed up to 7.7% smaller accuracies in two populations. A joint analysis of all agronomic and disease resistance traits further improved accuracies within the MT1 and MT2 models on average by 21.4% and 17.4%, respectively, as compared to either the agronomic or disease resistance traits, demonstrating the high potential of the multi-traits models in improving prediction accuracies.


Assuntos
Resistência à Doença , Triticum , Resistência à Doença/genética , Genoma , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/genética
2.
Theor Appl Genet ; 135(2): 537-552, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34724078

RESUMO

KEY MESSAGE: Using phenotype data of three spring wheat populations evaluated at 6-15 environments under two management systems, we found moderate to very high prediction accuracies across seven traits. The phenotype data collected under an organic management system effectively predicted the performance of lines in the conventional management and vice versa. There is growing interest in developing wheat cultivars specifically for organic agriculture, but we are not aware of the effect of organic management on the predictive ability of genomic selection (GS). Here, we evaluated within populations prediction accuracies of four GS models, four combinations of training and testing sets, three reaction norm models, and three random cross-validations (CV) schemes in three populations phenotyped under organic and conventional management systems. Our study was based on a total of 578 recombinant inbred lines and varieties from three spring wheat populations, which were evaluated for seven traits at 3-9 conventionally and 3-6 organically managed field environments and genotyped either with the wheat 90 K SNP array or DArTseq. We predicted the management systems (CV0M) or environments (CV0), a subset of lines that have been evaluated in either management (CV2M) or some environments (CV2), and the performance of newly developed lines in either management (CV1M) or environments (CV1). The average prediction accuracies of the model that incorporated genotype × environment interactions with CV0 and CV2 schemes varied from 0.69 to 0.97. In the CV1 and CV1M schemes, prediction accuracies ranged from - 0.12 to 0.77 depending on the reaction norm models, the traits, and populations. In most cases, grain protein showed the highest prediction accuracies. The phenotype data collected under the organic management effectively predicted the performance of lines under conventional management and vice versa. This is the first comprehensive GS study that investigated the effect of the organic management system in wheat.


Assuntos
Genômica , Triticum , Genoma de Planta , Genótipo , Fenótipo , Triticum/genética
3.
Planta ; 253(6): 128, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037846

RESUMO

MAIN CONCLUSION: We identified IAA13 negatively associated with lateral root number by comparing the differential expressed genes between Bupleurum chinense and B. scorzonerifolium. Dried roots of the genus Bupleurum L. are used as a herbal medicine for diseases in Asia. Bupleurum chinense has a greater number of lateral roots than B. scorzonerifolium, but the genetic mechanisms for such differences are largely unknown. We (a) compared the transcriptome profiles of the two species and (b) identified a subset of candidate genes involved in auxin signal transduction and explored their functions in lateral root development. By isoform sequencing (Iso-Seq) analyses of the whole plant, more unigenes were found in B. scorzonerifolium (118,868) than in B. chinense (93,485). Given the overarching role of indole-3-acetic acid (IAA) as one of the major regulators of lateral root development, we identified 539 unigenes associated with auxin signal transduction. Fourteen and 44 unigenes in the pathway were differentially expressed in B. chinense and B. scorzonerifolium, respectively, and 3 unigenes (LAX2, LAX4, and IAA13) were expressed in both species. The number of lateral root primordia increased after exogenous auxin application at 8 h and 12 h in B. scorzonerifolium and B. chinense, respectively. Since overexpression of IAA13 in Arabidopsis reduced the number of lateral roots, we hypothesized that IAA13 is involved in the reduction of the number of lateral roots in B. scorzonerifolium.


Assuntos
Arabidopsis , Bupleurum , Plantas Medicinais , Ásia , Bupleurum/genética , Raízes de Plantas/genética
4.
Theor Appl Genet ; 134(11): 3699-3719, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333664

RESUMO

KEY MESSAGE: Using phenotypic data of four biparental spring wheat populations evaluated at multiple environments under two management systems, we discovered 152 QTL and 22 QTL hotspots, of which two QTL accounted for up to 37% and 58% of the phenotypic variance, consistently detected in all environments, and fell within genomic regions harboring known genes. Identification of the physical positions of quantitative trait loci (QTL) would be highly useful for developing functional markers and comparing QTL results across multiple independent studies. The objectives of the present study were to map and characterize QTL associated with nine agronomic and end-use quality traits (tillering ability, plant height, lodging, grain yield, grain protein content, thousand kernel weight, test weight, sedimentation volume, and falling number) in hard red spring wheat recombinant inbred lines (RILs) using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map. We evaluated a total of 698 RILs from four populations derived from crosses involving seven parents at 3-8 conventionally (high N) and organically (low N) managed field environments. Using the phenotypic data combined across all environments per management, and the physical map between 1058 and 6526 markers per population, we identified 152 QTL associated with the nine traits, of which 29 had moderate and 2 with major effects. Forty-nine of the 152 QTL mapped across 22 QTL hotspot regions with each region coincident to 2-6 traits. Some of the QTL hotspots were physically located close to known genes. QSv.dms-1A and QPht.dms-4B.1 individually explained up to 37% and 58% of the variation in sedimentation volume and plant height, respectively, and had very large LOD scores that varied from 19.0 to 35.7 and from 16.7 to 55.9, respectively. We consistently detected both QTL in the combined and all individual environments, laying solid ground for further characterization and possibly for cloning.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Triticum/genética , Cruzamentos Genéticos , Variação Genética , Genótipo , Fenótipo
5.
Theor Appl Genet ; 132(4): 1145-1158, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578434

RESUMO

KEY MESSAGE: The extent of molecular diversity parameters across three rice species was compared using large germplasm collection genotyped with genomewide SNPs and SNPs that fell within selective sweep regions. Previous studies conducted on limited number of accessions have reported very low genetic variation in African rice (Oryza glaberrima Steud.) as compared to its wild progenitor (O. barthii A. Chev.) and to Asian rice (O. sativa L.). Here, we characterized a large collection of African rice and compared its molecular diversity indices and population structure with the two other species using genomewide single nucleotide polymorphisms (SNPs) and SNPs that mapped within selective sweeps. A total of 3245 samples representing African rice (2358), Asian rice (772) and O. barthii (115) were genotyped with 26,073 physically mapped SNPs. Using all SNPs, the level of marker polymorphism, average genetic distance and nucleotide diversity in African rice accounted for 59.1%, 63.2% and 37.1% of that of O. barthii, respectively. SNP polymorphism and overall nucleotide diversity of the African rice accounted for 20.1-32.1 and 16.3-37.3% of that of the Asian rice, respectively. We identified 780 SNPs that fell within 37 candidate selective sweeps in African rice, which were distributed across all 12 rice chromosomes. Nucleotide diversity of the African rice estimated from the 780 SNPs was 8.3 × 10-4, which is not only 20-fold smaller than the value estimated from all genomewide SNPs (π = 1.6 × 10-2), but also accounted for just 4.1%, 0.9% and 2.1% of that of O. barthii, lowland Asian rice and upland Asian rice, respectively. The genotype data generated for a large collection of rice accessions conserved at the AfricaRice genebank will be highly useful for the global rice community and promote germplasm use.


Assuntos
Variação Genética , Genética Populacional , Oryza/genética , Ásia , Cromossomos de Plantas/genética , Estudos de Associação Genética , Marcadores Genéticos , Filogenia , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
6.
BMC Genomics ; 18(1): 777, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025420

RESUMO

BACKGROUND: Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). RESULTS: Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. CONCLUSIONS: The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from the present study facilitate the maize breeding work in Ethiopia and germplasm exchange among breeding programs in Africa. We suggest the incorporation of high density molecular marker information in future heterotic group assignments.


Assuntos
Adaptação Fisiológica/genética , Altitude , Umidade , Endogamia , Polimorfismo de Nucleotídeo Único , Zea mays/genética , Zea mays/fisiologia , Marcadores Genéticos/genética , Genótipo , Técnicas de Genotipagem
7.
Theor Appl Genet ; 129(4): 753-765, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26849239

RESUMO

KEY MESSAGE: Molecular characterization information on genetic diversity, population structure and genetic relationships provided by this research will help maize breeders to better understand how to utilize the current CML collection. CIMMYT maize inbred lines (CMLs) have been widely used all over the world and have contributed greatly to both tropical and temperate maize improvement. Genetic diversity and population structure of the current CML collection and of six temperate inbred lines were assessed and relationships among all lines were determined with genotyping-by-sequencing SNPs. Results indicated that: (1) wider genetic distance and low kinship coefficients among most pairs of lines reflected the uniqueness of most lines in the current CML collection; (2) the population structure and genetic divergence between the Temperate subgroup and Tropical subgroups were clear; three major environmental adaptation groups (Lowland Tropical, Subtropical/Mid-altitude and Highland Tropical subgroups) were clearly present in the current CML collection; (3) the genetic diversity of the three Tropical subgroups was similar and greater than that of the Temperate subgroup; the average genetic distance between the Temperate and Tropical subgroups was greater than among Tropical subgroups; and (4) heterotic patterns in each environmental adaptation group estimated using GBS SNPs were only partially consistent with patterns estimated based on combining ability tests and pedigree information. Combining current heterotic information based on combining ability tests and the genetic relationships inferred from molecular marker analyses may be the best strategy to define heterotic groups for future tropical maize improvement. Information resulting from this research will help breeders to better understand how to utilize all the CMLs to select parental lines, replace testers, assign heterotic groups and create a core set of breeding germplasm.


Assuntos
Genótipo , Vigor Híbrido , Polimorfismo de Nucleotídeo Único , Zea mays/genética , DNA de Plantas/genética , Frequência do Gene , Endogamia , Melhoramento Vegetal , Análise de Sequência de DNA
8.
BMC Genomics ; 16: 908, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26545737

RESUMO

BACKGROUND: Quality control (QC) analysis is an important component in maize breeding and seed systems. Genotyping by next-generation sequencing (GBS) is an emerging method of SNP genotyping, which is being increasingly adopted for discovery applications, but its suitability for QC analysis has not been explored. The objectives of our study were 1) to evaluate the level of genetic purity and identity among two to nine seed sources of 16 inbred lines using 191 Kompetitive Allele Specific PCR (KASP) and 257,268 GBS markers, and 2) compare the correlation between the KASP-based low and the GBS-based high marker density on QC analysis. RESULTS: Genetic purity within each seed source varied from 49 to 100% for KASP and from 74 to 100% for GBS. All except one of the inbred lines obtained from CIMMYT showed 98 to 100% homogeneity irrespective of the marker type. On the contrary, only 16 and 21% of the samples obtained from EIAR and partners showed ≥95% purity for KASP and GBS, respectively. The genetic distance among multiple sources of the same line designation varied from 0.000 to 0.295 for KASP and from 0.004 to 0.230 for GBS. Five lines from CIMMYT showed ≤ 0.05 distance among multiple sources of the same line designation; the remaining eleven inbred lines, including two from CIMMYT and nine from Ethiopia showed higher than expected genetic distances for two or more seed sources. The correlation between the 191 KASP and 257,268 GBS markers was 0.88 for purity and 0.93 for identity. A reduction in the number of GBS markers to 1,343 decreased the correlation coefficient only by 0.03. CONCLUSIONS: Our results clearly showed high discrepancy both in genetic purity and identity by the origin of the seed sources (institutions) irrespective of the type of genotyping platform and number of markers used for analyses. Although there were some numerical differences between KASP and GBS, the overall conclusions reached from both methods was basically similar, which clearly suggests that smaller subset of preselected and high quality markers are sufficient for QC analysis that can easily be done using low marker density genotyping platforms, such as KASP. Results from this study would be highly relevant for plant breeders and seed system specialists.


Assuntos
Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Zea mays/genética , Alelos , Genótipo
9.
Theor Appl Genet ; 128(10): 1957-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26152570

RESUMO

KEY MESSAGE: Genome-wide association analysis in tropical and subtropical maize germplasm revealed that MLND resistance is influenced by multiple genomic regions with small to medium effects. The maize lethal necrosis disease (MLND) caused by synergistic interaction of Maize chlorotic mottle virus and Sugarcane mosaic virus, and has emerged as a serious threat to maize production in eastern Africa since 2011. Our objective was to gain insights into the genetic architecture underlying the resistance to MLND by genome-wide association study (GWAS) and genomic selection. We used two association mapping (AM) panels comprising a total of 615 diverse tropical/subtropical maize inbred lines. All the lines were evaluated against MLND under artificial inoculation. Both the panels were genotyped using genotyping-by-sequencing. Phenotypic variation for MLND resistance was significant and heritability was moderately high in both the panels. Few promising lines with high resistance to MLND were identified to be used as potential donors. GWAS revealed 24 SNPs that were significantly associated (P < 3 × 10(-5)) with MLND resistance. These SNPs are located within or adjacent to 20 putative candidate genes that are associated with plant disease resistance. Ridge regression best linear unbiased prediction with five-fold cross-validation revealed higher prediction accuracy for IMAS-AM panel (0.56) over DTMA-AM (0.36) panel. The prediction accuracy for both within and across panels is promising; inclusion of MLND resistance associated SNPs into the prediction model further improved the accuracy. Overall, the study revealed that resistance to MLND is controlled by multiple loci with small to medium effects and the SNPs identified by GWAS can be used as potential candidates in MLND resistance breeding program.


Assuntos
Resistência à Doença/genética , Vírus do Mosaico/patogenicidade , Doenças das Plantas/genética , Zea mays/genética , Estudos de Associação Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/virologia , Polimorfismo de Nucleotídeo Único , Zea mays/virologia
10.
Theor Appl Genet ; 128(9): 1839-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26081946

RESUMO

Msv1 , the major QTL for MSV resistance was delimited to an interval of 0.87 cM on chromosome 1 at 87 Mb and production markers with high prediction accuracy were developed. Maize streak virus (MSV) disease is a devastating disease in the Sub-Saharan Africa (SSA), which causes significant yield loss in maize. Resistance to MSV has previously been mapped to a major QTL (Msv1) on chromosome 1 that is germplasm and environment independent and to several minor loci elsewhere in the genome. In this study, Msv1 was fine-mapped through QTL isogenic recombinant strategy using a large F 2 population of CML206 × CML312 to an interval of 0.87 cM on chromosome 1. Genome-wide association study was conducted in the DTMA (Drought Tolerant Maize for Africa)-Association mapping panel with 278 tropical/sub-tropical breeding lines from CIMMYT using the high-density genotyping-by-sequencing (GBS) markers. This study identified 19 SNPs in the region between 82 and 93 Mb on chromosome 1(B73 RefGen_V2) at a P < 1.00E-04, which coincided with the fine-mapped region of Msv1. Haplotype trend regression identified a haplotype block significantly associated with response to MSV. Three SNPs in this haplotype block at 87 Mb on chromosome 1 had an accuracy of 0.94 in predicting the disease reaction in a collection of breeding lines with known responses to MSV infection. In two biparental populations, selection for resistant Msv1 haplotype demonstrated a reduction of 1.03-1.39 units on a rating scale of 1-5, compared to the susceptible haplotype. High-throughput KASP assays have been developed for these three SNPs to enable routine marker screening in the breeding pipeline for MSV resistance.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Vírus do Listrado do Milho , Doenças das Plantas/genética , Locos de Características Quantitativas , Zea mays/genética , Cromossomos de Plantas , Marcadores Genéticos , Haplótipos , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Zea mays/virologia
11.
BMC Genomics ; 14: 313, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23663209

RESUMO

BACKGROUND: Identification of QTL with large phenotypic effects conserved across genetic backgrounds and environments is one of the prerequisites for crop improvement using marker assisted selection (MAS). The objectives of this study were to identify meta-QTL (mQTL) for grain yield (GY) and anthesis silking interval (ASI) across 18 bi-parental maize populations evaluated in the same conditions across 2-4 managed water stressed and 3-4 well watered environments. RESULTS: The meta-analyses identified 68 mQTL (9 QTL specific to ASI, 15 specific to GY, and 44 for both GY and ASI). Mean phenotypic variance explained by each mQTL varied from 1.2 to 13.1% and the overall average was 6.5%. Few QTL were detected under both environmental treatments and/or multiple (>4 populations) genetic backgrounds. The number and 95% genetic and physical confidence intervals of the mQTL were highly reduced compared to the QTL identified in the original studies. Each physical interval of the mQTL consisted of 5 to 926 candidate genes. CONCLUSIONS: Meta-analyses reduced the number of QTL by 68% and narrowed the confidence intervals up to 12-fold. At least the 4 mQTL (mQTL2.2, mQTL6.1, mQTL7.5 and mQTL9.2) associated with GY under both water-stressed and well-watered environments and detected up to 6 populations may be considered for fine mapping and validation to confirm effects in different genetic backgrounds and pyramid them into new drought resistant breeding lines. This is the first extensive report on meta-analysis of data from over 3100 individuals genotyped using the same SNP platform and evaluated in the same conditions across a wide range of managed water-stressed and well-watered environments.


Assuntos
Meio Ambiente , Flores/crescimento & desenvolvimento , Locos de Características Quantitativas , Estresse Fisiológico/efeitos dos fármacos , Água/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Flores/efeitos dos fármacos , Flores/genética , Genótipo , Fenótipo , Estresse Fisiológico/genética , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
12.
Front Plant Sci ; 14: 1190358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680355

RESUMO

Fusarium head blight (FHB) is one the most globally destructive fungal diseases in wheat and other small grains, causing a reduction in grain yield by 10-70%. The present study was conducted in a panel of historical and modern Canadian spring wheat (Triticum aestivum L.) varieties and lines to identify new sources of FHB resistance and map associated quantitative trait loci (QTLs). We evaluated 249 varieties and lines for reaction to disease incidence, severity, and visual rating index (VRI) in seven environments by artificially spraying a mixture of four Fusarium graminearum isolates. A subset of 198 them were genotyped with the Wheat 90K iSelect single nucleotide polymorphisms (SNPs) array. Genome-wide association mapping performed on the overall best linear unbiased estimators (BLUE) computed from all seven environments and the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map of 26,449 polymorphic SNPs out of the 90K identified sixteen FHB resistance QTLs that individually accounted for 5.7-10.2% of the phenotypic variance. The positions of two of the FHB resistance QTLs overlapped with plant height and flowering time QTLs. Four of the QTLs (QFhb.dms-3B.1, QFhb.dms-5A.5, QFhb.dms-5A.7, and QFhb.dms-6A.4) were simultaneously associated with disease incidence, severity, and VRI, which accounted for 27.0-33.2% of the total phenotypic variance in the combined environments. Three of the QTLs (QFhb.dms-2A.2, QFhb.dms-2D.2, and QFhb.dms-5B.8) were associated with both incidence and VRI and accounted for 20.5-22.1% of the total phenotypic variance. In comparison with the VRI of the checks, we identified four highly resistant and thirty-three moderately resistant lines and varieties. The new FHB sources of resistance and the physical map of the associated QTLs would provide wheat breeders valuable information towards their efforts in developing improved varieties in western Canada.

13.
BMC Genomics ; 13: 113, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22443094

RESUMO

BACKGROUND: Knowledge of germplasm diversity and relationships among elite breeding materials is fundamentally important in crop improvement. We genotyped 450 maize inbred lines developed and/or widely used by CIMMYT breeding programs in both Kenya and Zimbabwe using 1065 SNP markers to (i) investigate population structure and patterns of relationship of the germplasm for better exploitation in breeding programs; (ii) assess the usefulness of SNPs for identifying heterotic groups commonly used by CIMMYT breeding programs; and (iii) identify a subset of highly informative SNP markers for routine and low cost genotyping of CIMMYT germplasm in the region using uniplex assays. RESULTS: Genetic distance for about 94% of the pairs of lines fell between 0.300 and 0.400. Eighty four percent of the pairs of lines also showed relative kinship values ≤ 0.500. Model-based population structure analysis, principal component analysis, neighbor-joining cluster analysis and discriminant analysis revealed the presence of 3 major groups and generally agree with pedigree information. The SNP markers did not show clear separation of heterotic groups A and B that were established based on combining ability tests through diallel and line x tester analyses. Our results demonstrated large differences among the SNP markers in terms of reproducibility, ease of scoring, polymorphism, minor allele frequency and polymorphic information content. About 40% of the SNPs in the multiplexed chip-based GoldenGate assays were found to be uninformative in this study and we recommend 644 of the 1065 for low to medium density genotyping in tropical maize germplasm using uniplex assays. CONCLUSIONS: There were high genetic distance and low kinship coefficients among most pairs of lines, clearly indicating the uniqueness of the majority of the inbred lines in these maize breeding programs. The results from this study will be useful to breeders in selecting best parental combinations for new breeding crosses, mapping population development and marker assisted breeding.


Assuntos
Cruzamento , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único/genética , Zea mays/genética , África , Marcadores Genéticos/genética , Técnicas de Genotipagem/economia , Células Germinativas/metabolismo , Zea mays/citologia
14.
Theor Appl Genet ; 125(7): 1487-501, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22801872

RESUMO

Quality control (QC) genotyping is an important component in breeding, but to our knowledge there are not well established protocols for its implementation in practical breeding programs. The objectives of our study were to (a) ascertain genetic identity among 2-4 seed sources of the same inbred line, (b) evaluate the extent of genetic homogeneity within inbred lines, and (c) identify a subset of highly informative single-nucleotide polymorphism (SNP) markers for routine and low-cost QC genotyping and suggest guidelines for data interpretation. We used a total of 28 maize inbred lines to study genetic identity among different seed sources by genotyping them with 532 and 1,065 SNPs using the KASPar and GoldenGate platforms, respectively. An additional set of 544 inbred lines was used for studying genetic homogeneity. The proportion of alleles that differed between seed sources of the same inbred line varied from 0.1 to 42.3 %. Seed sources exhibiting high levels of genetic distance are mis-labeled, while those with lower levels of difference are contaminated or still segregating. Genetic homogeneity varied from 68.7 to 100 % with 71.3 % of the inbred lines considered to be homogenous. Based on the data sets obtained for a wide range of sample sizes and diverse genetic backgrounds, we recommended a subset of 50-100 SNPs for routine and low-cost QC genotyping, verified them in a different set of double haploid and inbred lines, and outlined a protocol that could be used to minimize errors in genetic analyses and breeding.


Assuntos
Técnicas de Genotipagem/métodos , Técnicas de Genotipagem/normas , Endogamia , Clima Tropical , Zea mays/genética , Alelos , Heterogeneidade Genética , Loci Gênicos/genética , Genótipo , Haploidia , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Controle de Qualidade , Seleção Genética
15.
Plants (Basel) ; 11(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890521

RESUMO

Both the Linear Phenotypic Selection Index (LPSI) and the Restrictive Linear Phenotypic Selection Index (RLPSI) have been widely used to select parents and progenies, but the effect of economic weights on the selection parameters (the expected genetic gain, response to selection, and the correlation between the indices and genetic merits) have not been investigated in detail. Here, we (i) assessed combinations of 2304 economic weights using four traits (maturity, plant height, grain yield and grain protein content) recorded under four organically (low nitrogen) and five conventionally (high nitrogen) managed environments, (ii) compared single-trait and multi-trait selection indices (LPSI vs. RLPSI by imposing restrictions to the expected genetic gain of either yield or grain protein content), and (iii) selected a subset of about 10% spring wheat cultivars that performed very well under organic and/or conventional management systems. The multi-trait selection indices, with and without imposing restrictions, were superior to single trait selection. However, the selection parameters differed quite a lot depending on the economic weights, which suggests the need for optimizing the weights. Twenty-two of the 196 cultivars that showed superior performance under organic and/or conventional management systems were consistently selected using all five of the selected economic weights, and at least two of the selection scenarios. The selected cultivars belonged to the Canada Western Red Spring (16 cultivars), the Canada Northern Hard Red (3), and the Canada Prairie Spring Red (3), and required 83-93 days to maturity, were 72-100 cm tall, and produced from 4.0 to 6.2 t ha-1 grain yield with 14.6-17.7% GPC. The selected cultivars would be highly useful, not only as potential trait donors for breeding under an organic management system, but also for other studies, including nitrogen use efficiency.

16.
Genes (Basel) ; 13(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456370

RESUMO

Some studies have investigated the potential of genomic selection (GS) on stripe rust, leaf rust, Fusarium head blight (FHB), and leaf spot in wheat, but none of them have assessed the effect of the reaction norm model that incorporated GE interactions. In addition, the prediction accuracy on common bunt has not previously been studied. Here, we investigated within-population prediction accuracies using the baseline M1 model and two reaction norm models (M2 and M3) with three random cross-validation (CV1, CV2, and CV0) schemes. Three Canadian spring wheat populations were evaluated in up to eight field environments and genotyped with 3158, 5732, and 23,795 polymorphic markers. The M3 model that incorporated GE interactions reduced residual variance by an average of 10.2% as compared with the main effect M2 model and increased prediction accuracies on average by 2-6%. In some traits, the M3 model increased prediction accuracies up to 54% as compared with the M2 model. The average prediction accuracies of the M3 model with CV1, CV2, and CV0 schemes varied from 0.02 to 0.48, from 0.25 to 0.84, and from 0.14 to 0.87, respectively. In both CV2 and CV0 schemes, stripe rust in all three populations, common bunt and leaf rust in two populations, as well as FHB severity, FHB index, and leaf spot in one population had high to very high (0.54-0.87) prediction accuracies. This is the first comprehensive genomic selection study on five major diseases in spring wheat.


Assuntos
Basidiomycota , Fusarium , Basidiomycota/genética , Canadá , Resistência à Doença/genética , Fusarium/genética , Doenças das Plantas/genética , Triticum/genética
17.
Plants (Basel) ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807690

RESUMO

Some previous studies have assessed the predictive ability of genome-wide selection on stripe (yellow) rust resistance in wheat, but the effect of genotype by environment interaction (GEI) in prediction accuracies has not been well studied in diverse genetic backgrounds. Here, we compared the predictive ability of a model based on phenotypic data only (M1), the main effect of phenotype and molecular markers (M2), and a model that incorporated GEI (M3) using three cross-validations (CV1, CV2, and CV0) scenarios of interest to breeders in six spring wheat populations. Each population was evaluated at three to eight field nurseries and genotyped with either the DArTseq technology or the wheat 90K single nucleotide polymorphism arrays, of which a subset of 1,058- 23,795 polymorphic markers were used for the analyses. In the CV1 scenario, the mean prediction accuracies of the M1, M2, and M3 models across the six populations varied from -0.11 to -0.07, from 0.22 to 0.49, and from 0.19 to 0.48, respectively. Mean accuracies obtained using the M3 model in the CV1 scenario were significantly greater than the M2 model in two populations, the same in three populations, and smaller in one population. In both the CV2 and CV0 scenarios, the mean prediction accuracies of the three models varied from 0.53 to 0.84 and were not significantly different in all populations, except the Attila/CDC Go in the CV2, where the M3 model gave greater accuracy than both the M1 and M2 models. Overall, the M3 model increased prediction accuracies in some populations by up to 12.4% and decreased accuracy in others by up to 17.4%, demonstrating inconsistent results among genetic backgrounds that require considering each population separately. This is the first comprehensive genome-wide prediction study that investigated details of the effect of GEI on stripe rust resistance across diverse spring wheat populations.

18.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365358

RESUMO

The likelihood of success in developing modern cultivars depend on multiple factors, including the identification of suitable parents to initiate new crosses, and characterizations of genomic regions associated with target traits. The objectives of the present study were to (a) determine the best economic weights of four major wheat diseases (leaf spot, common bunt, leaf rust, and stripe rust) and grain yield for multi-trait restrictive linear phenotypic selection index (RLPSI), (b) select the top 10% cultivars and lines (hereafter referred as genotypes) with better resistance to combinations of the four diseases and acceptable grain yield as potential parents, and (c) map genomic regions associated with resistance to each disease using genome-wide association study (GWAS). A diversity panel of 196 spring wheat genotypes was evaluated for their reaction to stripe rust at eight environments, leaf rust at four environments, leaf spot at three environments, common bunt at two environments, and grain yield at five environments. The panel was genotyped with the Wheat 90K SNP array and a few KASP SNPs of which we used 23,342 markers for statistical analyses. The RLPSI analysis performed by restricting the expected genetic gain for yield displayed significant (p < 0.05) differences among the 3125 economic weights. Using the best four economic weights, a subset of 22 of the 196 genotypes were selected as potential parents with resistance to the four diseases and acceptable grain yield. GWAS identified 37 genomic regions, which included 12 for common bunt, 13 for leaf rust, 5 for stripe rust, and 7 for leaf spot. Each genomic region explained from 6.6 to 16.9% and together accounted for 39.4% of the stripe rust, 49.1% of the leaf spot, 94.0% of the leaf rust, and 97.9% of the common bunt phenotypic variance combined across all environments. Results from this study provide valuable information for wheat breeders selecting parental combinations for new crosses to develop improved germplasm with enhanced resistance to the four diseases as well as the physical positions of genomic regions that confer resistance, which facilitates direct comparisons for independent mapping studies in the future.

19.
Sci Rep ; 11(1): 23773, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893626

RESUMO

Previous molecular characterization studies conducted in Canadian wheat cultivars shed some light on the impact of plant breeding on genetic diversity, but the number of varieties and markers used was small. Here, we used 28,798 markers of the wheat 90K single nucleotide polymorphisms to (a) assess the extent of genetic diversity, relationship, population structure, and divergence among 174 historical and modern Canadian spring wheat varieties registered from 1905 to 2018 and 22 unregistered lines (hereinafter referred to as cultivars), and (b) identify genomic regions that had undergone selection. About 91% of the pairs of cultivars differed by 20-40% of the scored alleles, but only 7% of the pairs had kinship coefficients of < 0.250, suggesting the presence of a high proportion of redundancy in allelic composition. Although the 196 cultivars represented eight wheat classes, our results from phylogenetic, principal component, and the model-based population structure analyses revealed three groups, with no clear structure among most wheat classes, breeding programs, and breeding periods. FST statistics computed among different categorical variables showed little genetic differentiation (< 0.05) among breeding periods and breeding programs, but a diverse level of genetic differentiation among wheat classes and predicted groups. Diversity indices were the highest and lowest among cultivars registered from 1970 to 1980 and from 2011 to 2018, respectively. Using two outlier detection methods, we identified from 524 to 2314 SNPs and 41 selective sweeps of which some are close to genes with known phenotype, including plant height, photoperiodism, vernalization, gluten strength, and disease resistance.


Assuntos
Variação Genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Seleção Genética , Triticum/genética , Alelos , Canadá , Evolução Molecular , Ligação Genética , Marcadores Genéticos , Genética Populacional , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Fenótipo , Locos de Características Quantitativas , Triticum/classificação
20.
Plants (Basel) ; 10(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922551

RESUMO

In previous studies, we reported quantitative trait loci (QTL) associated with the heading, flowering, and maturity time in four hard red spring wheat recombinant inbred line (RIL) populations but the results are scattered in population-specific genetic maps, which is challenging to exploit efficiently in breeding. Here, we mapped and characterized QTL associated with these three earliness traits using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map. Our data consisted of (i) 6526 single nucleotide polymorphisms (SNPs) and two traits evaluated at five conventionally managed environments in the 'Cutler' × 'AC Barrie' population; (ii) 3158 SNPs and two traits evaluated across three organic and seven conventional managements in the 'Attila' × 'CDC Go' population; (iii) 5731 SilicoDArT and SNP markers and the three traits evaluated at four conventional and organic management systems in the 'Peace' × 'Carberry' population; and (iv) 1058 SNPs and two traits evaluated across two conventionally and organically managed environments in the 'Peace' × 'CDC Stanley' population. Using composite interval mapping, the phenotypic data across all environments, and the IWGSC RefSeq v2.0 physical maps, we identified a total of 44 QTL associated with days to heading (11), flowering (10), and maturity (23). Fifteen of the 44 QTL were common to both conventional and organic management systems, and the remaining QTL were specific to either the conventional (21) or organic (8) management systems. Some QTL harbor known genes, including the Vrn-A1, Vrn-B1, Rht-A1, and Rht-B1 that regulate photoperiodism, flowering time, and plant height in wheat, which lays a solid basis for cloning and further characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA