Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(11): 1391-1402, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34686865

RESUMO

Epithelial cells have an ability termed 'cell competition', which is an immune surveillance-like function that extrudes precancerous cells from the epithelial layer, leading to apoptosis and clearance. However, it remains unclear how epithelial cells recognize and extrude transformed cells. Here, we discovered that a PirB family protein, leukocyte immunoglobulin-like receptor B3 (LILRB3), which is expressed on non-transformed epithelial cells, recognizes major histocompatibility complex class I (MHC class I) that is highly expressed on transformed cells. MHC class I interaction with LILRB3 expressed on normal epithelial cells triggers an SHP2-ROCK2 pathway that generates a mechanical force to extrude transformed cells. Removal of transformed cells occurs independently of natural killer (NK) cell or CD8+ cytotoxic T cell-mediated activity. This is a new mechanism in that the immunological ligand-receptor system generates a mechanical force in non-immune epithelial cells to extrude precancerous cells in the same epithelial layer.


Assuntos
Antígenos CD/metabolismo , Apoptose , Competição entre as Células , Células Epiteliais/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias Pulmonares/metabolismo , Lesões Pré-Cancerosas/metabolismo , Receptores Imunológicos/metabolismo , Animais , Antígenos CD/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cães , Células Epiteliais/imunologia , Células Epiteliais/patologia , Células HaCaT , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Células Madin Darby de Rim Canino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/imunologia , Lesões Pré-Cancerosas/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Células RAW 264.7 , Receptores Imunológicos/genética , Estresse Mecânico , Quinases Associadas a rho/metabolismo
2.
Genes Cells ; 29(2): 169-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158708

RESUMO

Hypoxia-inducible factor 1 (HIF1) is a transcription factor that is stabilized under hypoxia conditions via post-translational modifications. HIF1 regulates tumor malignancy and metastasis by gene transcriptions, such as Warburg effect and angiogenesis-related genes, in cancer cells. However, the HIF1 downstream genes show varied expressional patterns in different cancer types. Herein, we performed the hierarchical clustering based on the HIF1 downstream gene expression patterns using 1406 cancer cell lines crossing 30 types of cancer to understand the relationship between HIF1 downstream genes and the metastatic potential of cancer cell lines. Two types of cancers, including bone and breast cancers, were classified based on HIF1 downstream genes with significantly altered metastatic potentials. Furthermore, different HIF1 downstream gene subsets were extracted to discriminate each subtype for these cancer types. HIF1 downstream subtyping classification will help to understand the novel insight into tumor malignancy and metastasis in each cancer type.


Assuntos
Neoplasias da Mama , Fator 1 Induzível por Hipóxia , Humanos , Feminino , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular , Neoplasias da Mama/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral , Hipóxia Celular/fisiologia
3.
Genes Cells ; 29(4): 301-315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366725

RESUMO

Antiandrogens were originally developed as therapeutic agents for prostate cancer but are also expected to be effective for breast cancer. However, the role of androgen signaling in breast cancer has long been controversial due to the limited number of experimental models. Our study aimed to comprehensively investigate the efficacy of antiandrogens on breast cancer. In the present study, a total of 18 breast cancer cell lines were treated with the agonist or antagonists of the androgen receptor (AR). Among the 18 cell lines tested, only T-47D cells proliferated in an androgen-dependent manner, while the other cell lines were almost irresponsive to AR stimulation. On the other hand, treatment with AR antagonists at relatively high doses suppressed the proliferation of not only T-47D cells but also some other cell lines including AR-low/negative cells. In addition, expression of the full-length AR and constitutively active AR splice variants, AR-V7 and ARV567es, was not correlated with sensitivity to AR antagonists. These data suggest that the antiproliferative effect of AR antagonists is AR-independent in some cases. Consistently, proliferation of AR-knockout BT-549 cells was inhibited by AR antagonists. Identification of biomarkers would be necessary to determine which breast cancer patients will benefit from these drugs.


Assuntos
Neoplasias da Mama , Neoplasias da Próstata , Masculino , Humanos , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Próstata/metabolismo , Células MCF-7 , Linhagem Celular Tumoral
4.
Physiol Genomics ; 56(2): 128-135, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955336

RESUMO

The mammary glands are dynamic tissues affected by pregnancy-related hormones during the pregnancy-lactation cycle. Collagen production and its dynamics are essential to the remodeling of the mammary glands. Alterations of the mammary microenvironment and stromal cells during the pregnancy-lactation cycle are important for understanding the physiology of the mammary glands and the development of breast tumors. In this study, we performed an evaluation of collagen dynamics in the mammary fat pad during the pregnancy-lactation cycle. Reanalysis of single-cell RNA-sequencing (scRNA-Seq) data showed the ectopic collagen expression in the immune cells and cell-cell interactions for collagens with single-cell resolution. The scRNA-Seq data showed that type I and type III collagen were produced not only by stromal fibroblasts but also by lymphoid and myeloid cell types in the pregnancy phase. Furthermore, the total cell-cell interaction score for collagen interactions was dramatically increased in the pregnancy tissue. The data presented in this study provide evidence that immune cells contribute, at least in part, to mammary collagen dynamics. Our findings suggest that immune cells, including lymphoid and myeloid cells, might be supportive members of the extracellular matrix orchestration in the pregnancy-lactation cycle of the mammary glands.NEW & NOTEWORTHY Our study evaluated mammary gland collagen dynamics during the pregnancy-lactation cycle using single-cell RNA-sequencing data. We found ectopic collagen expression in immune cells and an increase in collagen interactions during pregnancy. Type I and type III collagen were produced by lymphoid, myeloid, and stromal fibroblast cells during pregnancy. These findings suggest that immune cells, including lymphoid and myeloid cells, play a crucial role in supporting the extracellular matrix in mammary glands during pregnancy-lactation cycles.


Assuntos
Colágeno Tipo III , Colágeno , Gravidez , Feminino , Animais , Colágeno Tipo III/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Lactação/metabolismo , Hormônios/metabolismo , RNA/metabolismo , Glândulas Mamárias Animais/metabolismo
5.
J Biol Chem ; 299(9): 105083, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495110

RESUMO

c-Myc is a critical regulator of cell proliferation and growth. Elevated levels of c-Myc cause transcriptional amplification, leading to various types of cancers. Small molecules that specifically inhibit c-Myc-dependent regulation are potentially invaluable for anticancer therapy. Because c-Myc does not have enzymatic activity or targetable pockets, researchers have attempted to obtain small molecules that inhibit c-Myc cofactors, activate c-Myc repressors, or target epigenetic modifications to regulate the chromatin of c-Myc-addicted cancer without any clinical success. In this study, we screened for c-Myc inhibitors using a cell-dependent assay system in which the expression of c-Myc and its transcriptional activity can be inferred from monomeric Keima and enhanced GFP fluorescence, respectively. We identified one mitochondrial inhibitor, antimycin A, as a hit compound. The compound enhanced the c-Myc phosphorylation of threonine-58, consequently increasing the proteasome-mediated c-Myc degradation. The mechanistic analysis of antimycin A revealed that it enhanced the degradation of c-Myc protein through the activation of glycogen synthetic kinase 3 by reactive oxygen species (ROS) from damaged mitochondria. Furthermore, we found that the inhibition of cell growth by antimycin A was caused by both ROS-dependent and ROS-independent pathways. Interestingly, ROS-dependent growth inhibition occurred only in the presence of c-Myc, which may reflect the representative features of cancer cells. Consistently, the antimycin A sensitivity of cells was correlated to the endogenous c-Myc levels in various cancer cells. Overall, our study provides an effective strategy for identifying c-Myc inhibitors and proposes a novel concept for utilizing ROS inducers for cancer therapy.


Assuntos
Antimicina A , Proteólise , Proteínas Proto-Oncogênicas c-myc , Antimicina A/farmacologia , Linhagem Celular Tumoral , Ensaios de Triagem em Larga Escala , Fosforilação , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Treonina/metabolismo , Proteólise/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Células HCT116 , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Humanos
6.
Genes Cells ; 28(4): 277-287, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36659836

RESUMO

The homeobox family genes are often dysregulated in various cancer types. Particularly HOXB7 amplification and overexpression correlate with poor prognosis in various cancer such as gastric, pancreatic, and lung cancers. Moreover, HOXB7 is known to contribute to cancer progression by promoting epithelial to mesenchymal transition, anticancer drug resistance, and angiogenesis. In this study, we show that HOXB7 is coamplified with ERBB2 in a subset of breast cancer patients and HOXB7 expression correlates with poor prognosis in HER2-positive breast cancer patients. This clinical observation is supported by the following results-HOXB7 overexpression in an immortalized murine mammary gland epithelial cell line NMuMG induces cellular transformation in vitro, tumorigenesis, and lung metastasis through the activation of JAK-STAT signaling.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Glândulas Mamárias Humanas , Humanos , Camundongos , Animais , Feminino , Genes Homeobox , Transição Epitelial-Mesenquimal , Glândulas Mamárias Humanas/metabolismo , Proteínas de Homeodomínio/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
J Biol Chem ; 298(12): 102635, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273581

RESUMO

Cancer cells intrinsically proliferate in an autonomous manner; however, the expansion of cancer cell areas in a tissue is known to be regulated by surrounding nontransformed cells. Whether these nontransformed cells can be targeted to control the spread of cancer cells is not understood. In this study, we established a system to evaluate the cancer-inhibitory activity of surrounding nontransformed cells and screened chemical compounds that could induce this activity. Our findings revealed that lonidamine (LND) and domperidone (DPD) inhibited expansion of oncogenic foci of KRASG12D-expressing transformed cells, whereas they did not inhibit the proliferation of monocultured KRASG12D-expressing cells. Live imaging revealed that LND and DPD suppressed the movement of nontransformed cells away from the attaching cancer cells. Moreover, we determined that LND and DPD promoted stress fiber formation, and the dominant-negative mutant of a small GTPase RhoA relieved the suppression of focus expansion, suggesting that RhoA-mediated stress fiber formation is involved in the inhibition of the movement of nontransformed cells and focus expansion. In conclusion, we suggest that elucidation of the mechanism of action of LND and DPD may lead to the development of a new type of drug that could induce the anticancer activity of surrounding nontransformed cells.


Assuntos
Antineoplásicos , Domperidona , Indazóis , Neoplasias , Domperidona/farmacologia , Indazóis/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Camundongos , Células Epiteliais , Glândulas Mamárias Animais/citologia , Ensaios de Seleção de Medicamentos Antitumorais
8.
Cancer Cell Int ; 23(1): 57, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005661

RESUMO

BACKGROUND: In vivo investigations with cancer cells have powerful tools to discover cancer progression mechanisms and preclinical candidate drugs. Among these in vivo experimental models, the establishment of highly malignancy cell lines with xenograft has been frequently used. However, few previous researches targeted malignancy-related genes whose protein levels translationally changed. Therefore, this study aimed to identify malignancy-related genes which contributed to cancer progression and changed at the protein level in the in vivo selected cancer cell lines. METHODS: We established the high malignancy breast cancer cell line (LM05) by orthotopic xenograft as an in vivo selection method. To explore the altered genes by translational or post-translational regulation, we analyzed the protein production by western blotting in the highly malignant breast cancer cell line. Functional analyses of the altered genes were performed by in vitro and in vivo experiments. To reveal the molecular mechanisms of the regulation with protein level, we evaluated post-translational modification by immunoprecipitation. In addition, we evaluated translational production by click reaction-based purification of nascent protein. RESULTS: As a result, NF-κB inducing kinase (NIK) increased at the protein level and promoted the nuclear localization of NF-κB2 (p52) and RelB in the highly malignant breast cancer cell line. The functional analyses indicated the NIK upregulation contributed to tumor malignancy via cancer-associated fibroblasts (CAFs) attraction and partially anti-apoptotic activities. Additionally, the immunoprecipitation experiment revealed that the ubiquitination of NIK decreased in LM05 cells. The decline in NIK ubiquitination was attributed to the translational downregulation of cIAP1. CONCLUSIONS: Our study identified a dysregulated mechanism of NIK production by the suppression of NIK post-modification and cIAP1 translation. The aberrant NIK accumulation promoted tumor growth in the highly malignant breast cancer cell line.

9.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762164

RESUMO

We have developed a highly sensitive promoter trap vector system using transposons to generate reporter cells with high efficiency. Using an EGFP/luciferase reporter cell clone responsive to forskolin, which is thought to activate adenylate cyclase, isolated from human chronic myelogenous leukemia cell line K562, we found several compounds unexpectedly caused reporter responses. These included tyrosine kinase inhibitors such as dasatinib and cerdulatinib, which were seemingly unrelated to the forskolin-reactive pathway. To investigate whether any other clones of forskolin-responsive cells would show the same response, nine additional forskolin-responsive clones, each with a unique integration site, were generated and quantitatively evaluated by luciferase assay. The results showed that each clone represented different response patterns to the reactive compounds. Also, it became clear that each of the reactive compounds could be profiled as a unique pattern by the 10 reporter clones. When other TKIs, mainly bcr-abl inhibitors, were evaluated using a more focused set of five reporter clones, they also showed unique profiling. Among them, dasatinib and bosutinib, and imatinib and bafetinib showed homologous profiling. The tyrosine kinase inhibitors mentioned above are approved as anticancer agents, and the system could be used for similarity evaluation, efficacy prediction, etc., in the development of new anticancer agents.


Assuntos
Inibidores de Proteínas Quinases , Humanos , Dasatinibe/farmacologia , Colforsina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Mesilato de Imatinib/farmacologia
10.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012634

RESUMO

Previously, we established a highly sensitive promoter-trapping vector system using the piggyBac transposon for the efficient isolation of reporter cells. Herein, we examine whether this screening system can be applied to obtain vitamin-responsive cells. As a result, one and two reporter cells that responded to bexarotene (vitamin A) and calcitriol (vitamin D), respectively, were isolated from 4.7 × 106 seeded HeLaS3 cells. 5' RACE analyses identified the well-known CYP24A1 gene as a calcitriol-responsive gene, as well as two new bexarotene- or calcitriol-responsive genes, BDKRB2 and TSKU, respectively. TSKU, interestingly, also responded to bexarotene. Endogenous levels of the TSKU and BDKRB2 transcripts displayed only slight changes and were not detected in the comprehensive analyses performed to date. Dose-response analyses of BDKRB2 and TSKU reporter cells in parallel revealed a differential profile in response to each vitamin A agonist, suggesting a bioanalyzer. The present study demonstrates that producing multiple reporter cells by a type of random screening can efficiently identify novel genes with unusual characteristics and be used for the profiling of the properties of vitamin compounds. Similar approaches to the method shown here may be useful for identifying new markers and for the analysis or diagnosis of nutrients, toxins, metabolites, etc.


Assuntos
Calcitriol , Vitamina A , Bexaroteno , Calcitriol/metabolismo , Genes Reporter , Regiões Promotoras Genéticas , Receptores de Calcitriol/metabolismo , Vitamina A/farmacologia , Vitaminas/farmacologia
11.
Genes Cells ; 25(2): 111-123, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31849141

RESUMO

Bone is one of the most common metastatic sites of breast cancer, and bone metastasis profoundly affects the quality of life of breast cancer patients. Bone metastasis is commonly observed among all the subtypes of breast cancer; however, its molecular mechanism has been analyzed only in triple-negative subtype of breast cancer (TNBC). To characterize the molecular mechanisms of bone metastasis of luminal breast cancer, we established a bone-metastatic model of the MCF7, luminal breast cancer cell line, with enhanced osteolytic activity by intracaudal arterial injection (CAI). Pathological analysis of the established cell lines revealed that they exhibited fierce osteolytic ability by promoting osteoclast differentiation and activity. The signature genes extracted from highly osteolytic MCF7 cell lines were differed from those of bone-metastatic TNBC cell lines. Our results suggest that unique mechanisms of osteolysis in bone-metastatic lesions of luminal breast cancer. In addition, several up-regulated genes in MCF7-BM (Bone Metastasis) 02 cell lines correlated with poor prognosis with luminal breast cancer patients. Our findings support further study on the bone-metastatic mechanisms of luminal breast cancer.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Osteólise/patologia , Animais , Neoplasias Ósseas/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD
12.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672831

RESUMO

Metastasis is a complex event in cancer progression and causes most deaths from cancer. Repeated transplantation of metastatic cancer cells derived from transplanted murine organs can be used to select the population of highly metastatic cancer cells; this method is called as in vivo selection. The in vivo selection method and highly metastatic cancer cell lines have contributed to reveal the molecular mechanisms of cancer metastasis. Here, we present an overview of the methodology for the in vivo selection method. Recent comparative analysis of the transplantation methods for metastasis have revealed the divergence of metastasis gene signatures. Even cancer cells that metastasize to the same organ show various metastatic cascades and gene expression patterns by changing the transplantation method for the in vivo selection. These findings suggest that the selection of metastasis models for the study of metastasis gene signatures has the potential to influence research results. The study of novel gene signatures that are identified from novel highly metastatic cell lines and patient-derived xenografts (PDXs) will be helpful for understanding the novel mechanisms of metastasis.


Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica
13.
Int J Mol Sci ; 21(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114327

RESUMO

Bioluminescence imaging (BLI) is useful to monitor cell movement and gene expression in live animals. However, D-luciferin has a short wavelength (560 nm) which is absorbed by tissues and the use of near-infrared (NIR) luciferin analogues enable high sensitivity in vivo BLI. The AkaLumine-AkaLuc BLI system (Aka-BLI) can detect resolution at the single-cell level; however, it has a clear hepatic background signal. Here, to enable the highly sensitive detection of bioluminescence from the surrounding liver tissues, we focused on seMpai (C15H16N3O2S) which has been synthesized as a luciferin analogue and has high luminescent abilities as same as AkaLumine. We demonstrated that seMpai BLI could detect micro-signals near the liver without any background signal. The solution of seMpai was neutral; therefore, seMpai imaging did not cause any adverse effect in mice. seMpai enabled a highly sensitive in vivo BLI as compared to previous techniques. Our findings suggest that the development of a novel mutated luciferase against seMpai may enable a highly sensitive BLI at the single-cell level without any background signal. Novel seMpai BLI system can be used for in vivo imaging in the fields of life sciences and medicine.


Assuntos
Luciferina de Vaga-Lumes/análogos & derivados , Neoplasias Hepáticas/secundário , Micrometástase de Neoplasia/diagnóstico por imagem , Tiazóis/síntese química , Animais , Feminino , Neoplasias Hepáticas/diagnóstico por imagem , Medições Luminescentes , Camundongos , Estrutura Molecular , Transplante de Neoplasias , Sensibilidade e Especificidade , Tiazóis/administração & dosagem , Tiazóis/química
14.
J Cell Physiol ; 234(10): 17280-17294, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30784076

RESUMO

Angiogenesis, the formation of new blood vessels, is involved in a variety of diseases including the tumor growth. In response to various angiogenic stimulations, a number of proteins on the surface of vascular endothelial cells are activated to coordinate cell proliferation, migration, and spreading processes to form new blood vessels. Plasma membrane localization of these angiogenic proteins, which include vascular endothelial growth factor receptors and integrins, are warranted by intracellular membrane trafficking. Here, by using a siRNA library, we screened for the sorting nexin family that regulates intracellular trafficking and identified sorting nexin 9 (SNX9) as a novel angiogenic factor in human umbilical vein endothelial cells (HUVECs). SNX9 was essential for cell spreading on the Matrigel, and tube formation that mimics in vivo angiogenesis in HUVECs. SNX9 depletion significantly delayed the recycling of integrin ß1, an essential adhesion molecule for angiogenesis, and reduced the surface levels of integrin ß1 in HUVECs. Clinically, we showed that SNX9 protein was highly expressed in tumor endothelial cells of human colorectal cancer tissues. High-level expression of SNX9 messenger RNA significantly correlated with poor prognosis of the patients with colorectal cancer. These results suggest that SNX9 is an angiogenic factor and provide a novel target for the development of new antiangiogenic drugs.


Assuntos
Neoplasias Colorretais/metabolismo , Integrina beta1/metabolismo , Neovascularização Patológica/metabolismo , Nexinas de Classificação/metabolismo , Indutores da Angiogênese/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrinas/metabolismo , Neovascularização Patológica/genética , Transporte Proteico/fisiologia
15.
Breast Cancer Res ; 21(1): 1, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611295

RESUMO

BACKGROUND: To obtain a deep understanding of the mechanism by which breast cancer develops, the genes involved in tumorigenesis should be analyzed in vivo. Mouse mammary gland can regenerate completely from a mammary stem cell (MaSC), which enables us to analyze the effect of gene expression and repression on tumorigenesis in mammary gland regenerated from genetically manipulated MaSCs. Although lentiviral and retroviral systems have usually been applied for gene transduction into MaSCs, they are associated with difficulty in introducing long, repeated, or transcriptional termination sequences. There is thus a need for an easier and quicker gene delivery system. METHODS: We devised a new system for gene delivery into MaSCs using the piggyBac transposon vectors and electroporation. Compared with viral systems, this system enables easier and quicker transfection of even long, repeated, or transcriptional termination DNA sequences. We designed gene expression vectors of the transposon system, equipped with a luciferase (Luc) expression cassette for monitoring gene transduction into regenerative mammary gland in mice by in-vivo imaging. A doxycycline (Dox)-inducible system was also integrated for expressing the target gene after mammary regeneration to mimic the actual mechanism of tumorigenesis. RESULTS: With this new gene delivery system, genetically manipulated mammary glands were successfully reconstituted even though the vector size was > 200 kb and even in the presence of DNA elements such as promoters and transcription termination sequences, which are major obstacles to viral vector packaging. They differentiated correctly into both basal and luminal cells, and showed normal morphological change and milk production after pregnancy, as well as self-renewal capacity. Using the Tet-On system, gene expression can be controlled by the addition of Dox after mammary reconstitution. In a case study using polyoma-virus middle T antigen (PyMT), oncogene-induced tumorigenesis was achieved. The histological appearance of the tumor was highly similar to that of the mouse mammary tumor virus-PyMT transgenic mouse model. CONCLUSIONS: With this system, gene transduction in the mammary gland can be easily and quickly achieved, and gene expression can be controlled by Dox administration. This system for genetic manipulation could be useful for analyzing genes involved in breast cancer.


Assuntos
Diferenciação Celular/genética , Engenharia Genética/métodos , Glândulas Mamárias Animais/fisiologia , Neoplasias Mamárias Experimentais/genética , Células-Tronco/fisiologia , Animais , Linhagem Celular , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Doxiciclina/administração & dosagem , Feminino , Fibroblastos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/transplante , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células/métodos , Transfecção/métodos
16.
Cancer Sci ; 110(2): 650-661, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30515933

RESUMO

Rho GTPase Rac1 is a central regulator of F-actin organization and signal transduction to control plasma membrane dynamics and cell proliferation. Dysregulated Rac1 activity is often observed in various cancers including breast cancer and is suggested to be critical for malignancy. Here, we showed that the ubiquitin E3 ligase complex Cullin-3 (CUL3)/KCTD10 is essential for epidermal growth factor (EGF)-induced/human epidermal growth factor receptor 2 (HER2)-dependent Rac1 activation in HER2-positive breast cancer cells. EGF-induced dorsal membrane ruffle formation and cell proliferation that depends on both Rac1 and HER2 were suppressed in CUL3- or KCTD10-depleted cells. Mechanistically, CUL3/KCTD10 ubiquitinated RhoB for degradation, another Rho GTPase that inhibits Rac1 activation at the plasma membrane by suppressing endosome-to-plasma membrane traffic of Rac1. In HER2-positive breast cancers, high expression of Rac1 mRNA significantly correlated with poor prognosis of the patients. This study shows that this novel molecular axis (CUL3/KCTD10/RhoB) positively regulates the activity of Rac1 in HER2-positive breast cancers, and our findings may lead to new treatment options for HER2- and Rac1-positive breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Culina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Receptor ErbB-2/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células/fisiologia , Endossomos/metabolismo , Endossomos/fisiologia , Feminino , Células HEK293 , Humanos , Transporte Proteico/fisiologia
17.
Biochem Biophys Res Commun ; 516(4): 1116-1122, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31280863

RESUMO

Eukaryotic translation initiation factor 3 subunit D (EIF3D) binds to the 5'-cap of specific mRNAs, initiating their translation into polypeptides. From a pathological standpoint, EIF3D has been observed to be essential for cell growth in various cancer types, and cancer patients with high EIF3D mRNA levels exhibit poor prognosis, indicating involvement of EIF3D in oncogenesis. In this study, we found, by mass spectrometry, that Cullin-3 (CUL3)/KCTD10 ubiquitin (Ub) ligase forms a complex with EIF3D. We also demonstrated that EIF3D is K27-polyubiquitinated at the lysine 153 and 275 residues in a KCTD10-dependent manner in human hepatocellular carcinoma HepG2 cells. Similar to other cancers, high expression of EIF3D significantly correlated with poor prognosis in hepatocellular carcinoma patients, and depletion of EIF3D drastically suppressed HepG2 cell proliferation. These results indicate that EIF3D is a novel substrate of CUL3/KCTD10 Ub ligase and suggest involvement of K27-polyubiquitinated EIF3D in the development of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas Culina/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Neoplasias Hepáticas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Células Hep G2 , Humanos , Mapas de Interação de Proteínas , Ubiquitinação
18.
Cancer Sci ; 109(11): 3532-3542, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30207029

RESUMO

The PHLDA family (pleckstrin homology-like domain family) of genes consists of 3 members: PHLDA1, 2, and 3. Both PHLDA3 and PHLDA2 are phosphatidylinositol (PIP) binding proteins and function as repressors of Akt. They have tumor suppressive functions, mainly through Akt inhibition. Several reports suggest that PHLDA1 also has a tumor suppressive function; however, the precise molecular functions of PHLDA1 remain to be elucidated. Through a comprehensive screen for p53 target genes, we identified PHLDA1 as a novel p53 target, and we show that PHLDA1 has the ability to repress Akt in a manner similar to that of PHLDA3 and PHLDA2. PHLDA1 has a so-called split PH domain in which the PH domain is divided into an N-terminal (ß sheets 1-3) and a C-terminal (ß sheets 4-7 and an α-helix) portions. We show that the PH domain of PHLDA1 is responsible for its localization to the plasma membrane and binding to phosphatidylinositol. We also show that the function of the PH domain is essential for Akt repression. In addition, PHLDA1 expression analysis suggests that PHLDA1 has a tumor suppressive function in breast and ovarian cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias Ovarianas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Transplante de Neoplasias , Fosfatidilinositóis/metabolismo , Ligação Proteica , Fatores de Transcrição/química
19.
Cancer Sci ; 108(6): 1210-1222, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28371195

RESUMO

Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition MET, are crucial in several stages of cancer metastasis. Epithelial-mesenchymal transition allows cancer cells to move to proximal blood vessels for intravasation. However, because EMT and MET processes are dynamic, mesenchymal cancer cells are likely to undergo MET transiently and subsequently re-undergo EMT to restart the metastatic process. Therefore, spatiotemporally coordinated mutual regulation between EMT and MET could occur during metastasis. To elucidate such regulation, we chose HCC38, a human triple-negative breast cancer cell line, because HCC38 is composed of epithelial and mesenchymal populations at a fixed ratio even though mesenchymal cells proliferate significantly more slowly than epithelial cells. We purified epithelial and mesenchymal cells from Venus-labeled and unlabeled HCC38 cells and mixed them at various ratios to follow EMT and MET. Using this system, we found that the efficiency of EMT is approximately an order of magnitude higher than that of MET and that the two populations significantly enhance the transition of cells from the other population to their own. In addition, knockdown of Zinc finger E-box-binding homeobox 1 (ZEB1) or Zinc finger protein SNAI2 (SLUG) significantly suppressed EMT but promoted partial MET, indicating that ZEB1 and SLUG are crucial to EMT and MET. We also show that primary breast cancer cells underwent EMT that correlated with changes in expression profiles of genes determining EMT status and breast cancer subtype. These changes were very similar to those observed in EMT in HCC38 cells. Consequently, we propose HCC38 as a suitable model to analyze EMT-MET dynamics that could affect the development of triple-negative breast cancer.


Assuntos
Transição Epitelial-Mesenquimal/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células-Tronco Mesenquimais/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
20.
Nanomedicine ; 13(3): 1219-1227, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27965166

RESUMO

1,5-Dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (GGLG) liposomes were previously developed to enhance drug delivery efficiency in tumor cells owing to its pH-responsive properties. Herein, we report the modification of GGLG liposomes by conjugating a Fab' fragment of an ErbB2 antibody to the terminus of PEG (polyethylene glycol)-lipid (Fab'-GGLG liposomes). The conjugation of Fab' fragments did not affect the antibody activity, drug (doxorubicin, DOX) encapsulation efficiency, stability during storage or pH-sensitivity. However, the binding affinity of Fab'-GGLG liposomes was enhanced to ErbB2-overexpressing HCC1954 cells specifically, and the cell association increased 10-fold in comparison to GGLG liposomes. Consequently, intracellular DOX delivery was enhanced, with an increased cytotoxicity in HCC1954 cells (i.e., IC50 of 1.17 and 3.08 µg/mL for Fab'-GGLG-DOX and GGLG-DOX liposomes, respectively). Further, a significantly enhanced tumor growth inhibition was obtained in an ErbB2-overexpressing breast cancer-bearing mouse model. Therefore, a potent anticancer drug delivery system was constructed by the immunological modification of pH-sensitive liposomes.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Imunoconjugados/imunologia , Lipossomos/imunologia , Receptor ErbB-2/imunologia , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Mama/efeitos dos fármacos , Mama/imunologia , Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Preparações de Ação Retardada/química , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/imunologia , Humanos , Concentração de Íons de Hidrogênio , Imunoconjugados/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA