RESUMO
Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.
Assuntos
Anticorpos Antifúngicos/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Imunidade , Imunoglobulina G/imunologia , Micobioma/imunologia , Animais , Linfócitos B/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Fezes/microbiologia , Centro Germinativo/imunologia , Humanos , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Transdução de SinaisRESUMO
The fungal microbiota (mycobiota) is an integral part of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation1-6. Although aberrant changes in the mycobiota have been linked to several diseases, including inflammatory bowel disease3-9, it is currently unknown whether fungal species captured by deep sequencing represent living organisms and whether specific fungi have functional consequences for disease development in affected individuals. Here we developed a translational platform for the functional analysis of the mycobiome at the fungal-strain- and patient-specific level. Combining high-resolution mycobiota sequencing, fungal culturomics and genomics, a CRISPR-Cas9-based fungal strain editing system, in vitro functional immunoreactivity assays and in vivo models, this platform enables the examination of host-fungal crosstalk in the human gut. We discovered a rich genetic diversity of opportunistic Candida albicans strains that dominate the colonic mucosa of patients with inflammatory bowel disease. Among these human-gut-derived isolates, strains with high immune-cell-damaging capacity (HD strains) reflect the disease features of individual patients with ulcerative colitis and aggravated intestinal inflammation in vivo through IL-1ß-dependent mechanisms. Niche-specific inflammatory immunity and interleukin-17A-producing T helper cell (TH17 cell) antifungal responses by HD strains in the gut were dependent on the C. albicans-secreted peptide toxin candidalysin during the transition from a benign commensal to a pathobiont state. These findings reveal the strain-specific nature of host-fungal interactions in the human gut and highlight new diagnostic and therapeutic targets for diseases of inflammatory origin.
Assuntos
Fungos , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Micobioma , Animais , Sistemas CRISPR-Cas , Candida albicans , Fungos/genética , Fungos/patogenicidade , Variação Genética , Humanos , Imunidade , Inflamação , MamíferosRESUMO
Clostridioides difficile infection (CDI) is an urgent public health threat with limited preventative options. In this work, we developed a messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccine targeting C. difficile toxins and virulence factors. This multivalent vaccine elicited robust and long-lived systemic and mucosal antigen-specific humoral and cellular immune responses across animal models, independent of changes to the intestinal microbiota. Vaccination protected mice from lethal CDI in both primary and recurrent infection models, and inclusion of non-toxin cellular and spore antigens improved decolonization of toxigenic C. difficile from the gastrointestinal tract. Our studies demonstrate mRNA-LNP vaccine technology as a promising platform for the development of novel C. difficile therapeutics with potential for limiting acute disease and promoting bacterial decolonization.
Assuntos
Toxinas Bacterianas , Vacinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Nanopartículas , Vacinas Combinadas , Vacinas de mRNA , Animais , Feminino , Camundongos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Clostridioides difficile/imunologia , Clostridioides difficile/genética , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/imunologia , Modelos Animais de Doenças , Microbioma Gastrointestinal , Imunidade Celular , Imunidade Humoral , Lipossomos , Camundongos Endogâmicos C57BL , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia , RNA Mensageiro/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologiaRESUMO
Clostridioides difficile is a spore-forming, obligate anaerobe, and ubiquitous nosocomial pathogen. While C. difficile infection in adults causes a spectrum of disease, including pseudomembranous colitis and toxic megacolon, healthy infants are asymptomatically colonized at high rates. The mechanisms leading to high colonization rates and infant protection from C. difficile are currently unknown; however, the ecology and metabolic state of the intestinal microbiome are factors known to influence C. difficile pathogenesis. In this review, we will examine the aspects of the early-life microbiome that may contribute to the incidence of C. difficile and protection from disease manifestation in infants. We will also discuss whether features of the adult microbiota that enable and restrict C. difficile are prevalent during early-life colonization.
Assuntos
Clostridioides difficile , Infecções por Clostridium , Enterocolite Pseudomembranosa , Microbiota , Adulto , Clostridioides , Infecções por Clostridium/epidemiologia , Humanos , LactenteRESUMO
Fecal microbiota transplantation (FMT) targeting gut microbiota has recently been successfully applied to ulcerative colitis. However, only a subset of patients responds to FMT, and there is a pressing need for biomarkers of responsiveness. Fungi (the mycobiota) represent a highly immunologically reactive component of the gut microbiota. We analyzed samples from a large randomized controlled trial of FMT for ulcerative colitis (UC). High Candida abundance pre-FMT was associated with a clinical response, whereas decreased Candida abundance post-FMT was indicative of ameliorated disease severity. High pre-FMT Candida was associated with increased bacterial diversity post-FMT, and the presence of genera was linked to FMT responsiveness. Although we detected elevated anti-Candida antibodies in placebo recipients, this increase was abrogated in FMT recipients. Our data suggest that FMT might reduce Candida to contain pro-inflammatory immunity during intestinal disease and highlight the utility of mycobiota-focused approaches to identify FMT responders prior to therapy initiation.
Assuntos
Colite Ulcerativa/terapia , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Fungos , Adulto , Anticorpos Antifúngicos/sangue , Bactérias/genética , Candida , Colite Ulcerativa/microbiologia , Feminino , Fungos/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , RNA Ribossômico 16S/genética , Resultado do TratamentoRESUMO
Sensing of the gut microbiota, including fungi, regulates mucosal immunity. Whether fungal sensing in the gut can influence immunity at other body sites is unknown. Here we show that fluconazole-induced gut fungal dysbiosis has persistent effects on allergic airway disease in a house dust mite challenge model. Mice with a defined community of bacteria, but lacking intestinal fungi were not susceptible to fluconazole-induced dysbiosis, while colonization with a fungal mixture recapitulated the detrimental effects. Gut-resident mononuclear phagocytes (MNPs) expressing the fractalkine receptor CX3CR1 were essential for the effect of gut fungal dysbiosis on peripheral immunity. Depletion of CX3CR1+ MNPs or selective inhibition of Syk signaling downstream of fungal sensing in these cells ameliorated lung allergy. These results indicate that disruption of intestinal fungal communities can have persistent effects on peripheral immunity and aggravate disease severity through fungal sensing by gut-resident CX3CR1+ MNPs.
Assuntos
Disbiose , Hipersensibilidade , Animais , Receptor 1 de Quimiocina CX3C , Fungos , Intestinos , Camundongos , FagócitosRESUMO
Intestinal fungi are an important component of the microbiota, and recent studies have unveiled their potential in modulating host immune homeostasis and inflammatory disease. Nonetheless, the mechanisms governing immunity to gut fungal communities (mycobiota) remain unknown. We identified CX3CR1+ mononuclear phagocytes (MNPs) as being essential for the initiation of innate and adaptive immune responses to intestinal fungi. CX3CR1+ MNPs express antifungal receptors and activate antifungal responses in a Syk-dependent manner. Genetic ablation of CX3CR1+ MNPs in mice led to changes in gut fungal communities and to severe colitis that was rescued by antifungal treatment. In Crohn's disease patients, a missense mutation in the gene encoding CX3CR1 was identified and found to be associated with impaired antifungal responses. These results unravel a role of CX3CR1+ MNPs in mediating interactions between intestinal mycobiota and host immunity at steady state and during inflammatory disease.