RESUMO
INTRODUCTION: The conect4children (c4c) consortium was setup to facilitate the development of new drugs and therapies for paediatric populations and address key challenges associated with paediatric clinical trials. Two of the major adopting principles for c4c were academia-industry partnership and data harmonisation and interoperability through common eCRF definitions. To understand the challenges arising out of these principles, the c4c team at Newcastle University conducted semi-structured interviews with four c4c industry partners. METHODS: Each partner was asked 10 questions about the data standards used in their company, management and maintenance of data dictionaries, how they dealt with paediatric-specific issues, major knowledge gaps and how academia could aid in bridging these gaps. Thematic analysis was performed to identify patterns in their answers. RESULTS: All companies use the Clinical Data Interchange Standards Consortium (CDISC) standards but face problems when certain terminology is not included in CDISC (e.g., paediatric-specific terminologies). All companies were committed to interoperability and had strict policies about how additional terminology could be added to their dictionaries. Three of the four companies maintained a single dictionary but also had lighter versions for specific usage. The two major knowledge gaps identified from the interviews were handling of non-CDISC terminology and maintenance of normal lab ranges in dictionaries. DISCUSSION: To address these gaps, c4c has been working on a four-point plan including the development of a cross-cutting paediatric dictionary and a paediatric user guide in collaboration with CDISC.
Assuntos
Desenvolvimento de Medicamentos , Parcerias Público-Privadas , Criança , Humanos , Pesquisa Qualitativa , Ensaios Clínicos como AssuntoRESUMO
The design of randomized controlled clinical studies can greatly benefit from iterative assessments of population representativeness of eligibility criteria. We propose a multi-trait metric - GIST 2.0 that can compute the a priori generalizability based on the population representativeness of a clinical study by explicitly modeling the dependencies among all eligibility criteria. We evaluate this metric on twenty clinical studies of two diseases and analyze how a study's eligibility criteria affect its generalizability (collectively and individually). We statistically analyze the effects of trial setting, trait selection and trait summarizing technique on GIST 2.0. Finally we provide theoretical as well as empirical validations for the expected properties of GIST 2.0.
Assuntos
Seleção de Pacientes , Ensaios Clínicos Controlados Aleatórios como Assunto , Pesquisa Biomédica , Humanos , SoftwareRESUMO
While mathematical model observers are intended for efficient assessment of medical imaging systems, their findings should be relevant for human observers as the primary clinical end users. We have investigated whether pursuing equivalence between the model and human-observer tasks can help ensure this goal. A localization ROC (LROC) study tested prostate lesion detection in simulated In-111 SPECT imaging with anthropomorphic phantoms. The test images were 2D slices extracted from reconstructed volumes. The iterative OSEM reconstruction method was used with Gaussian postsmoothing. Variations in the number of iterations and the level of postfiltering defined the test strategies in the study. Human-observer performance was compared with that of a visual-search (VS) observer, a scanning channelized Hotelling observer, and a scanning nonprewhitening (CNPW) observer. These model observers were applied with precise information about the target regions of interest (ROIs). ROI knowledge was a study variable for the human observers. In one study format, the humans read the SPECT image alone. With a dual-modality format, the SPECT image was presented alongside an anatomical image slice extracted from the density map of the phantom. Performance was scored by area under the LROC curve. The human observers performed significantly better with the dual-modality format, and correlation with the model observers was also improved. Given the human-observer data from the SPECT study format, the Pearson correlation coefficients for the model observers were 0.58 (VS), -0.12 (CH), and -0.23 (CNPW). The respective coefficients based on the human-observer data from the dual-modality study were 0.72, 0.27, and -0.11. These results point towards the continued development of the VS observer for enhancing task equivalence in model-observer studies.
RESUMO
The Myotubular and Centronuclear Myopathy Registry is an international research database containing key longitudinal data on a diverse and growing cohort of individuals affected by this group of rare and ultra-rare neuromuscular conditions. It can inform and support all areas of translational research including epidemiological and natural history studies, clinical trial feasibility planning, recruitment for clinical trials or other research studies, stand-alone clinical studies, standards of care development, and provision of real-world evidence data. For ten years, it has also served as a valuable communications tool and provided a link between the scientific and patient communities. With the anticipated advent of disease-modifying therapies for these conditions, the registry is a key resource for the generation of post-authorisation data for regulatory decision-making, real world evidence, and patient-reported outcome measures. In this paper we present some key data from the current 444 registered individuals with the following genotype split: MTM1 n=270, DNM2 n=42, BIN1 n=4, TTN n=4, RYR1 n=12, other n=4, unknown n=108. The data presented are consistent with the current literature and the common understanding of a strong genotype/phenotype correlations in CNM, most notably the data supports the current knowledge that XLMTM is typically the most severe form of CNM. Additionally, we outline the ways in which the registry supports research, and, more generally, the importance of continuous investment and development to maintain the relevance of registries for all stakeholders. Further information on the registry and contact details are available on the registry website at www.mtmcnmregistry.org.
Assuntos
Músculo Esquelético , Miopatias Congênitas Estruturais , Humanos , Pesquisa Translacional Biomédica , Dinamina II/genética , Genótipo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapiaRESUMO
Introduction: The conect4children (c4c) project aims to facilitate efficient planning and delivery of paediatric clinical trials. One objective of c4c is data standardization and reuse. Interoperability and reusability of paediatric clinical trial data is challenging due to a lack of standardization. The Clinical Data Interchange Standards Consortium (CDISC) standards that are required or recommended for regulatory submissions in several countries lack paediatric specificity with limited awareness within academic institutions. To address this, c4c and CDISC collaborated to develop the Pediatrics User Guide (PUG) consisting of cross-cutting data items that are routinely collected in paediatric clinical trials, factoring in all paediatric age ranges. Methods and Results: The development of the PUG consisted of six stages. During the scoping phase, subtopics (each containing several clinically relevant concepts) were suggested and debated for inclusion in the PUG. Ninety concepts were selected for the modelling phase. Concept maps describing the Research Topic and representation procedure were developed for the 19 concepts that had no (or partial) previous modelling in CDISC. Next, metadata and implementation examples were developed for concepts. This was followed by a CDISC internal review and a public review. For both these review stages, the feedback comments were either implemented or rejected based on budget, timelines, expert review, and scope. The PUG was published on the CDISC website on February 23, 2023. Discussion: The PUG is a first step in bridging the lack of child specific CDISC standards, particularly within academia. Several academic and industrial partners were involved in the development of the PUG, and c4c has undertaken multiple steps to publicize the PUG within its academic partner organizations - in particular, the European Reference Networks (ERNs) that are developing registries and dictionaries in 24 disease areas. In the long term, continued use of the PUG in paediatric clinical trials will enable the pooling of data from multiple trials, which is particularly important for medical domains with small populations.
RESUMO
Despite tremendous advancements in in vivo imaging modalities, there remains substantial uncertainty with respect to tumor delineation on in these images. Histopathology remains the gold standard for determining the extent of malignancy, with in vivo imaging to histopathologic correlation enabling spatial comparisons. In this review, the steps necessary for successful imaging to histopathologic correlation are described, including in vivo imaging, resection, fixation, specimen sectioning (sectioning technique, securing technique, orientation matching, slice matching), microtome sectioning and staining, correlation (including image registration) and performance evaluation. The techniques used for each of these steps are also discussed. Hundreds of publications from the past 20 years were surveyed, and 62 selected for detailed analysis. For these 62 publications, each stage of the correlative pathology process (and the sub-steps of specimen sectioning) are listed. A statistical analysis was conducted based on 19 studies that reported target registration error as their performance metric. While some methods promise greater accuracy, they may be expensive. Due to the complexity of the processes involved, correlative pathology studies generally include a small number of subjects, which hinders advanced developments in this field.
Assuntos
Diagnóstico por Imagem , Testes Diagnósticos de Rotina , HumanosRESUMO
Brain-shift during neurosurgery compromises the accuracy of tracking the boundaries of the tumor to be resected. Although several studies have used various finite element models (FEMs) to predict inward brain-shift, evaluation of their accuracy and efficiency based on public benchmark data has been limited. This study evaluates several FEMs proposed in the literature (various boundary conditions, mesh sizes, and material properties) by using intraoperative imaging data (the public REtroSpective Evaluation of Cerebral Tumors [RESECT] database). Four patients with low-grade gliomas were identified as having inward brain-shifts. We computed the accuracy (using target registration error) of several FEM-based brain-shift predictions and compared our findings. Since information on head orientation during craniotomy is not included in this database, we tested various plausible angles of head rotation. We analyzed the effects of brain tissue viscoelastic properties, mesh size, craniotomy position, CSF drainage level, and rigidity of meninges and then quantitatively evaluated the trade-off between accuracy and central processing unit time in predicting inward brain-shift across all models with second-order tetrahedral FEMs. The mean initial target registration error (TRE) was 5.78 ± 3.78 mm with rigid registration. FEM prediction (edge-length, 5 mm) with non-rigid meninges led to a mean TRE correction of 1.84 ± 0.83 mm assuming heterogeneous material. Results show that, for the low-grade glioma patients in the study, including non-rigid modeling of the meninges was significant statistically. In contrast including heterogeneity was not significant. To estimate the optimal head orientation and CSF drainage, an angle step of 5° and an CSF height step of 5 mm were enough leading to <0.26 mm TRE fluctuation.
Assuntos
Benchmarking , Encéfalo , Encéfalo/patologia , Humanos , Procedimentos Neurocirúrgicos/métodos , Estudos RetrospectivosRESUMO
PURPOSE: Precise correlation between three-dimensional (3D) imaging and histology can aid biomechanical modeling of the breast. We develop a framework to register ex vivo images to histology using a novel cryo-fluorescence tomography (CFT) device. METHODS: A formalin-fixed cadaveric breast specimen, including chest wall, was subjected to high-resolution magnetic resonance (MR) imaging. The specimen was then frozen and embedded in an optimal cutting temperature (OCT) compound. The OCT block was placed in a CFT device with an overhead camera and 50 µm thick slices were successively shaved off the block. After each shaving, the block-face was photographed. At select locations including connective/adipose tissue, muscle, skin, and fibroglandular tissue, 20 µm sections were transferred onto cryogenic tape for manual hematoxylin and eosin staining, histological assessment, and image capture. A 3D white-light image was automatically reconstructed from the photographs by aligning fiducial markers embedded in the OCT block. The 3D MR image, 3D white-light image, and photomicrographs were rigidly registered. Target registration errors (TREs) were computed based on 10 pairs of points marked at fibroglandular intersections. The overall MR-histology registration was used to compare the MR intensities at tissue extraction sites with a one-way analysis of variance. RESULTS: The MR image to CFT-captured white-light image registration achieved a mean TRE of 0.73 ± 0.25 mm (less than the 1 mm MR slice resolution). The block-face white-light image and block-face photomicrograph registration showed visually indistinguishable alignment of anatomical structures and tissue boundaries. The MR intensities at the four tissue sites identified from histology differed significantly (p < 0.01). Each tissue pair, except the skin-connective/adipose tissue pair, also had significantly different MR intensities (p < 0.01). CONCLUSIONS: Fine sectioning in a highly controlled imaging/sectioning environment enables accurate registration between the MR image and histology. Statistically significant differences in MR signal intensities between histological tissues are indicators for the specificity of correlation between MRI and histology.
Assuntos
Técnicas Histológicas , Imageamento Tridimensional , Mama/diagnóstico por imagem , Marcadores Fiduciais , Humanos , Imageamento por Ressonância MagnéticaRESUMO
PURPOSE: Response assessment of radiotherapy for the treatment of intrahepatic cholangiocarcinoma (IHCC) across longitudinal images is challenging due to anatomical changes. Advanced deformable image registration (DIR) techniques are required to correlate corresponding tissues across time. In this study, the accuracy of five commercially available DIR algorithms in four treatment planning systems (TPS) was investigated for the registration of planning images with posttreatment follow-up images for response assessment or re-treatment purposes. METHODS: Twenty-nine IHCC patients treated with hypofractionated radiotherapy and with pretreatment and posttreatment contrast-enhanced computed tomography (CT) images were analyzed. Liver segmentations were semiautomatically generated on all CTs and the posttreatment CT was then registered to the pretreatment CT using five commercially available algorithms (Demons, B-splines, salient feature-based, anatomically constrained and finite element-based) in four TPSs. This was followed by an in-depth analysis of 10 DIR strategies (plus global and liver-focused rigid registration) in one of the TPSs. Eight of the strategies were variants of the anatomically constrained DIR while the two were based on a finite element-based biomechanical registration. The anatomically constrained techniques were combinations of: (a) initializations with the two rigid registrations; (b) two similarity metrics - correlation coefficient (CC) and mutual information (MI); and (c) with and without a controlling region of interest (ROI) - the liver. The finite element-based techniques were initialized by the two rigid registrations. The accuracy of each registration was evaluated using target registration error (TRE) based on identified vessel bifurcations. The results were statistically analyzed with a one-way analysis of variance (ANOVA) and pairwise comparison tests. Stratified analysis was conducted on the inter-TPS data (plus the liver-focused rigid registration) using treatment volume changes, slice thickness, time between scans, and abnormal lab values as stratifying factors. RESULTS: The complex deformation observed following treatment resulted in average TRE exceeding the image voxel size for all techniques. For the inter-TPS comparison, the Demons algorithm had the lowest TRE, which was significantly superior to all the other algorithms. The respective mean (standard deviation) TRE (in mm) for the Demons, B-splines, salient feature-based, anatomically constrained, and finite element-based algorithms were 4.6 (2.0), 7.4 (2.7), 7.2 (2.6), 6.3 (2.3), and 7.5 (4.0). In the follow-up comparison of the anatomically constrained DIR, the strategy with liver-focused rigid registration initialization, CC as similarity metric and liver as a controlling ROI had the lowest mean TRE - 6.0 (2.0). The maximum TRE for all techniques exceeded 10 mm. Selection of DIR strategy was found to be a statistically significant factor for registration accuracy. Tumor volume change had a significant effect on TRE for finite element-based registration and B-splines DIR. Time between scans had a substantial effect on TRE for all registrations but was only significant for liver-focused rigid, finite element-based and salient feature-based DIRs. CONCLUSIONS: This study demonstrates the limitations of commercially available DIR techniques in TPSs for alignment of longitudinal images of liver cancer presenting complex anatomical changes including local hypertrophy and fibrosis/necrosis. DIR in this setting should be used with caution and careful evaluation.
Assuntos
Neoplasias dos Ductos Biliares/diagnóstico por imagem , Colangiocarcinoma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Adulto , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: The population representativeness of a clinical study is influenced by how real-world patients qualify for the study. We analyze the representativeness of eligible patients for multiple type 2 diabetes trials and the relationship between representativeness and other trial characteristics. METHODS: Sixty-nine study traits available in the electronic health record data for 2034 patients with type 2 diabetes were used to profile the target patients for type 2 diabetes trials. A set of 1691 type 2 diabetes trials was identified from ClinicalTrials.gov, and their population representativeness was calculated using the published Generalizability Index of Study Traits 2.0 metric. The relationships between population representativeness and number of traits and between trial duration and trial metadata were statistically analyzed. A focused analysis with only phase 2 and 3 interventional trials was also conducted. RESULTS: A total of 869 of 1691 trials (51.4%) and 412 of 776 phase 2 and 3 interventional trials (53.1%) had a population representativeness of <5%. The overall representativeness was significantly correlated with the representativeness of the Hba1c criterion. The greater the number of criteria or the shorter the trial, the less the representativeness. Among the trial metadata, phase, recruitment status, and start year were found to have a statistically significant effect on population representativeness. For phase 2 and 3 interventional trials, only start year was significantly associated with representativeness. CONCLUSIONS: Our study quantified the representativeness of multiple type 2 diabetes trials. The common low representativeness of type 2 diabetes trials could be attributed to specific study design requirements of trials or safety concerns. Rather than criticizing the low representativeness, we contribute a method for increasing the transparency of the representativeness of clinical trials.
RESUMO
PURPOSE: The absorbed doses for two radioisotopes, 99mTc and 131I, between previously validated Zubal phantom and the recently developed XCAT phantom were compared. MATERIALS AND METHODS: GATE Monte Carlo code was used to simulate the statistical process of radiation. A XCAT phantom with voxel and matrix sizes similar to a standard Zubal phantom was generated. According to Medical International Radiation Dose formalism, specific absorbed fraction (SAF) values for photons and S-factors for beta particles were tabulated. The amounts of absorbed doses were calculated and compared in different organs. RESULTS: The differences of gamma radiation doses, SAFs, between Zubal and XCAT are >50% in adrenal from adrenal, pancreas from pancreas and thyroid from thyroid, in lung from kidney, kidneys from lungs and in kidneys from thyroid and thyroid from kidneys. The beta radiation doses differences between Zubal and XCAT are >50% in thyroid from thyroid, bladder from bladder, kidney from kidney, liver from bladder, thyroid from bladder and kidney from thyroid. The size and distances of the organs were different between XCAT and Zubal phantoms. Denoted differences of SAF and S-factors correspond to the different organ geometries in phantoms. CONCLUSION: The results of absorbed doses in Zubal and XCAT phantoms are different. The variations prohibit easy comparison or interchangeability of dosimetry between these phantoms.
Assuntos
Medicina Nuclear , Doses de Radiação , Radiometria , Humanos , Método de Monte Carlo , Imagens de FantasmasRESUMO
Cohort identification for clinical studies tends to be laborious, time-consuming, and expensive. Developing automated or semi-automated methods for cohort identification is one of the "holy grails" in the field of biomedical informatics. We propose a high-throughput similarity-based cohort identification algorithm by applying numerical abstractions on Electronic Health Records (EHR) data. We implement this algorithm using the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), which enables sites using this standardized EHR data representation to avail this algorithm with minimum effort for local implementation. We validate its performance for a retrospective cohort identification task on six clinical trials conducted at the Columbia University Medical Center. Our algorithm achieves an average Area Under the Curve (AUC) of 0.966 and an average Precision at 5 of 0.983. This interoperable method promises to achieve efficient cohort identification in EHR databases. We discuss suitable applications of our method and its limitations and propose warranted future work.
RESUMO
Randomized controlled trials can benefit from proactive assessment of how well their participant selection strategies during the design of eligibility criteria can influence the study generalizability. In this paper, we present a quantitative metric called generalizability index for study traits 2.0 (GIST 2.0) to assess the a priori generalizability (based on population representativeness) of a clinical trial by accounting for the dependencies among multiple eligibility criteria. The metric was evaluated on 16 sepsis trials identified from ClinicalTrials.gov, with their adverse event reports extracted from the trial results sections. The correlation between GIST scores and adverse events was analyzed. We found that the GIST 2.0 score was significantly correlated with total adverse events and serious adverse events (weighted correlation coefficients of 0.825 and 0.709, respectively, with P < 0.01). This study exemplifies the promising use of Big Data in electronic health records and ClinicalTrials.gov for optimizing eligibility criteria design for clinical studies.
Assuntos
Anti-Infecciosos/efeitos adversos , Seleção de Pacientes , Sepse/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Pesquisa Translacional Biomédica/métodos , Adulto , Anti-Infecciosos/uso terapêutico , Ensaios Clínicos como Assunto , Biologia Computacional , Mineração de Dados , Registros Eletrônicos de Saúde , Humanos , Sepse/imunologia , Sepse/microbiologia , Sepse/fisiopatologia , Software , Síndrome de Resposta Inflamatória Sistêmica/etiologiaRESUMO
Model observers intended to predict the diagnostic performance of human observers should account for the effects of both quantum and anatomical noise. We compared the abilities of several visual-search (VS) and scanning Hotelling-type models to account for anatomical noise in a localization receiver operating characteristic (LROC) study involving simulated nuclear medicine images. Our VS observer invoked a two-stage process of search and analysis. The images featured lesions in the prostate and pelvic lymph nodes. Lesion contrast and the geometric resolution and sensitivity of the imaging collimator were the study variables. A set of anthropomorphic mathematical phantoms was imaged with an analytic projector based on eight parallel-hole collimators with different sensitivity and resolution properties. The LROC study was conducted with human observers and the channelized nonprewhitening, channelized Hotelling (CH) and VS model observers. The CH observer was applied in a "background-known-statistically" protocol while the VS observer performed a quasi-background-known-exactly task. Both of these models were applied with and without internal noise in the decision variables. A perceptual search threshold was also tested with the VS observer. The model observers without inefficiencies failed to mimic the average performance trend for the humans. The CH and VS observers with internal noise matched the humans primarily at low collimator sensitivities. With both internal noise and the search threshold, the VS observer attained quantitative agreement with the human observers. Computational efficiency is an important advantage of the VS observer.
RESUMO
Knowledge reuse of cancer trial designs may benefit from a temporal understanding of the evolution of the target populations of cancer studies over time. Therefore, we conducted a retrospective analysis of the trends of cancer trial eligibility criteria between 1999 and 2014. The yearly distributions of eligibility concepts for chemicals and drugs, procedures, observations, and medical conditions extracted from free-text eligibility criteria of 32,000 clinical trials for 89 cancer types were analyzed. We identified the concepts that trend upwards or downwards in all or selected cancer types, and the concepts that show anomalous trends for some cancers. Later, concept trends were studied in a disease-specific manner and illustrated for breast cancer. Criteria trends observed in this study are also validated and interpreted using evidence from the existing medical literature. This study contributes a method for concept trend analysis and original knowledge of the trends in cancer clinical trial eligibility criteria.