Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 69(12): 737-740, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26842322

RESUMO

Lithium-ion batteries are well established for use in portable consumer products and are increasingly used in high power electro-mobility and photovoltaic storage applications. In hybrid and plug-in electric vehicles degradation and useful lifetime at standard operation conditions are critical parameters in addition to performance and safety. Here stress-induced ageing of commercially available high power battery cells of the type A123 AHR32113M1 Ultra-B, consisting of a LiFePO(4) cathode and a graphite anode have been investigated. A usually accepted capacity loss for electric vehicles of 20% was reached after 8560 stress profiles corresponding to a driving distance of almost 200'000 km. Cycling with a stress profile applying constant power corresponding to the average power and energy of a full stress profile and starting at 60% state of charge showed a much faster capacity loss. Electric impedance measurements show the dependence of the capacity loss and constant phase element at low frequency, indicating Li-ion diffusion blocking in the cathode. Microscopic analysis of anode, separator, and cathode, shows defect formation in bulk material and at interfaces.

2.
Nanotechnology ; 24(39): 395301, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24013454

RESUMO

We demonstrate a reliable fabrication method to produce plasmonic dipole nanoantennas with gap values in the range of 3.5-20 nm. The method combines electron beam lithography to create gold nanorods and helium focused ion beam milling to cut the gaps. Results show a reproducibility within 1 nm. Scattering spectra of antennas show a red shift of resonance wavelengths and an increase of the intensity of resonance peaks with a decrease of the gap size, which is in agreement with finite element simulations. The measured refractive index sensitivity was about 250 nm per refractive index unit for antennas with gap values below 5 nm.

3.
Opt Express ; 19(14): 13604-11, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747516

RESUMO

X-ray differential phase contrast computed tomography (DPC CT) with a Talbot-Lau interferometer setup allows visualizing the three-dimensional distribution of the refractive index by measuring the shifts of an interference pattern due to phase variations of the X-ray beam. Unfortunately, severe reconstruction artifacts appear in the presence of differential phase wrapping and clipping. In this paper, we propose to use the attenuation contrast, which is obtained from the same measurement, for correcting the DPC signal. Using the example of a DPC CT measurement with pronounced phase artifacts, we will discuss the efficiency of our phase artifact correction method.


Assuntos
Algoritmos , Artefatos , Imageamento Tridimensional/instrumentação , Interferometria/instrumentação , Intensificação de Imagem Radiográfica/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
4.
Opt Express ; 18(8): 8722-34, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588716

RESUMO

We propose a new configuration for a fully metal coated scanning near field (SNOM) probe based on asymmetric corrugations in the metal coating. The variation in the metal surface induces coupling mechanisms leading to the creation of a localized hot spot under linearly polarized excitation. Field localization is an effect of paramount importance for resolution but cannot be achieved with standard axisymmetric fully metal-coated probes, unless a more cumbersome radially polarized excitation is used. Our simulations show that this promising structure allows one to simplify the mode injection procedures circumventing the need for a radially polarized beam.

5.
Ultrasonics ; 53(7): 1309-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23664378

RESUMO

Non-destructive assessment of delaminations in glued laminated timber structures is required during their full life cycle. A novel air-coupled ultrasound (ACU) method has been developed, which is able to separately detect delaminations in individual bonding planes of arbitrarily high and long laminated stacks and typically 200 mm wide. The 120 kHz ACU transmitter-receiver pair is positioned at two opposite lateral faces of the sample, with a small inclination with respect to the inspected bonding planes, so that an ultrasound beam is excited at a user-defined refraction angle within the sample, interacting with defects in a limited height portion of the stack. The attenuation of the ultrasound beam transmitted across the defect (negative detection) provided better sensitivity to defects than the scattered fields (positive detection), which are masked by spurious fields. Dedicated finite-difference time-domain (FDTD) simulations provided understanding on the wave propagation and defect detectability limits, with respect to the heterogeneous anisotropic material structure introduced by the curvature of the annual rings in individual timber lamellas. A simplified analytical expression was derived to calculate refraction angles in timber in function of insonification angle and ring angle. Experimental results show that the method is able to detect >20% wide defects in both isotropic material and in glulam with straight year rings, and >50% wide and 100mm long defects in commercial glulam beams. The discrimination of defects from background variability is optimized by normalizing the images with respect to reference defect-free sample sections (normalization) or previous measurements (difference imaging), and by combining readings obtained with distinct ultrasound beam refraction angles (spatial diversity). Future work aims at the development of a tomographic defect inspection by combining the described theoretical and experimental methods.

6.
Ultrasonics ; 53(1): 157-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22677469

RESUMO

Non-destructive density and microstructure quality control testing in particleboards (PBs) is necessary in production lines. A pulsed air-coupled ultrasound (ACU) high-resolution normal transmission system, together with a first wave tracking algorithm, were developed to image amplitude transmission G(p) and velocity c(p) distributions at 120kHz for PBs of specific nominal densities and five particle geometries, which were then correlated to X-ray in-plane density images ρ(s). Test PBs with a homogeneous vertical density profile were manufactured in a laboratory environment and conditioned in a standard climate (T=20°C, RH=65%) before the measurements. Continuous trends (R(2)>0.97) were obtained by matching the lateral resolution of X-ray images with the ACU sound field radius (σ(w)(o)=21mm) and by clustering the scatter plots. ρ(s)↦c(p) was described with a three-parameter non-linear model for each particle geometry, allowing for ACU density prediction with 3% uncertainty and PB testing according to EN312. ρ(s)↦G(p) was modeled by calculating ACU coupling gain and by fitting inverse power laws with offset of ρ(s) and c(p) to material attenuation, which scaled with particle volume. G(p) and c(p) variations with the frequency were examined, showing thickness resonances and scattering attenuation. The combination of ACU and X-ray data enabled successful particle geometry classification. The observed trends were interpreted in terms of multi-scale porosity and grain scattering with finite-difference time-domain simulations, which modeled arbitrarily complex stiffness and density distributions. The proposed method allows for non-contact determination of relations between acoustic properties and in-plane density distribution in plate materials. In future work, commercial PBs with non-uniform vertical density profiles should be investigated.

7.
Plasmonics ; 6-6(2): 327-336, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21743802

RESUMO

We study the effect of a spiral corrugation on the outer surface of a fully metal-coated scanning near-field optical microscopy (SNOM) probe using the finite element method. The introduction of a novel form of asymmetry, devoid of any preferential spatial direction and covering the whole angular range of the originally axisymmetric tip, allows attaining strong field localization for a linearly polarised mode with arbitrary orientation. Compared to previously proposed asymmetric structures which require linearly polarised excitation properly oriented with respect to the asymmetry, such a configuration enables significant simplification in mode injection. In fact, not only is the need for the delicate procedure to generate radially polarised beams overcome, but also the relative alignment between the linearly polarised beam and the tip modification is no longer critical.

8.
Nat Commun ; 1: 150, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21267000

RESUMO

Deep subwavelength integration of high-definition plasmonic nanostructures is of key importance in the development of future optical nanocircuitry for high-speed communication, quantum computation and lab-on-a-chip applications. To date, the experimental realization of proposed extended plasmonic networks consisting of multiple functional elements remains challenging, mainly because of the multi-crystallinity of commonly used thermally evaporated gold layers. This can produce structural imperfections in individual circuit elements that drastically reduce the yield of functional integrated nanocircuits. In this paper we demonstrate the use of large (>100 µm(2)) but thin (<80 nm) chemically grown single-crystalline gold flakes that, after immobilization, serve as an ideal basis for focused ion beam milling and other top-down nanofabrication techniques on any desired substrate. Using this methodology we obtain high-definition ultrasmooth gold nanostructures with superior optical properties and reproducible nano-sized features over micrometre-length scales. Our approach provides a possible solution to overcome the current fabrication bottleneck and realize high-definition plasmonic nanocircuitry.


Assuntos
Ouro/química , Nanoestruturas/química , Nanotecnologia/métodos , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Ressonância de Plasmônio de Superfície
9.
Nano Lett ; 6(8): 1589-93, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16895340

RESUMO

The thermal conductivity of individual multiwalled carbon nanotubes was measured by utilizing the four-point-probe third-harmonic method, based on the fact that the third harmonic amplitude and phase as a response to applied alternate current at fundamental frequency, omega, can be expressed in terms of thermal conductivity and diffusivity. To this end, a microfabricated device composed of four metal electrodes was modified to manufacture nanometer-sized wires by using a focused ion beam source. A carbon nanotube could then be suspended over a deep trench milled by the focused ion beam, preventing heat loss to the substrate. Compared with the two-point-probe technique, a significant improvement in accuracy is assured by using four probes, because the contact contribution to the determination of the thermal conductivity is eliminated, making it possible to measure the correct signals of first and third harmonics. The multiwalled carbon nanotube was modeled as a one-dimensional diffusive energy transporter and its thermal conductivity was measured at room temperature under vacuum to be 300 +/- 20 W/mK.


Assuntos
Eletroquímica/instrumentação , Teste de Materiais/instrumentação , Teste de Materiais/métodos , Modelos Químicos , Modelos Moleculares , Nanotubos de Carbono/análise , Nanotubos de Carbono/química , Algoritmos , Simulação por Computador , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Microeletrodos , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA