Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339615

RESUMO

As cyber-attacks increase in unencrypted communication environments such as the traditional Internet, protected communication channels based on cryptographic protocols, such as transport layer security (TLS), have been introduced to the Internet. Accordingly, attackers have been carrying out cyber-attacks by hiding themselves in protected communication channels. However, the nature of channels protected by cryptographic protocols makes it difficult to distinguish between normal and malicious network traffic behaviors. This means that traditional anomaly detection models with features from packets extracted a deep packet inspection (DPI) have been neutralized. Recently, studies on anomaly detection using artificial intelligence (AI) and statistical characteristics of traffic have been proposed as an alternative. In this review, we provide a systematic review for AI-based anomaly detection techniques over encrypted traffic. We set several research questions on the review topic and collected research according to eligibility criteria. Through the screening process and quality assessment, 30 research articles were selected with high suitability to be included in the review from the collected literature. We reviewed the selected research in terms of dataset, feature extraction, feature selection, preprocessing, anomaly detection algorithm, and performance indicators. As a result of the literature review, it was confirmed that various techniques used for AI-based anomaly detection over encrypted traffic were used. Some techniques are similar to those used for AI-based anomaly detection over unencrypted traffic, but some technologies are different from those used for unencrypted traffic.

2.
Sensors (Basel) ; 24(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202989

RESUMO

Data scarcity is a significant obstacle for modern data science and artificial intelligence research communities. The fact that abundant data are a key element of a powerful prediction model is well known through various past studies. However, industrial control systems (ICS) are operated in a closed environment due to security and privacy issues, so collected data are generally not disclosed. In this environment, synthetic data generation can be a good alternative. However, ICS datasets have time-series characteristics and include features with short- and long-term temporal dependencies. In this paper, we propose the attention-based variational recurrent autoencoder (AVRAE) for generating time-series ICS data. We first extend the evidence lower bound of the variational inference to time-series data. Then, a recurrent neural-network-based autoencoder is designed to take this as the objective. AVRAE employs the attention mechanism to effectively learn the long-term and short-term temporal dependencies ICS data implies. Finally, we present an algorithm for generating synthetic ICS time-series data using learned AVRAE. In a comprehensive evaluation using the ICS dataset HAI and various performance indicators, AVRAE successfully generated visually and statistically plausible synthetic ICS data.

3.
Sensors (Basel) ; 23(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139701

RESUMO

Cyber threats to industrial control systems (ICSs) have increased as information and communications technology (ICT) has been incorporated. In response to these cyber threats, we are implementing a range of security equipment and specialized training programs. Anomaly data stemming from cyber-attacks are crucial for effectively testing security equipment and conducting cyber training exercises. However, securing anomaly data in an ICS environment requires a lot of effort. For this reason, we propose a method for generating anomaly data that reflects cyber-attack characteristics. This method uses systematic sampling and linear regression models in an ICS environment to generate anomaly data reflecting cyber-attack characteristics based on benign data. The method uses statistical analysis to identify features indicative of cyber-attack characteristics and alters their values from benign data through systematic sampling. The transformed data are then used to train a linear regression model. The linear regression model can predict features because it has learned the linear relationships between data features. This experiment used ICS_PCAPS data generated based on Modbus, frequently used in ICS. In this experiment, more than 50,000 new anomaly data pieces were generated. As a result of using some of the new anomaly data generated as training data for the existing model, no significant performance degradation occurred. Additionally, comparing some of the new anomaly data with the original benign and attack data using kernel density estimation confirmed that the new anomaly data pattern was changing from benign data to attack data. In this way, anomaly data that partially reflect the pattern of the attack data were created. The proposed method generates anomaly data like cyber-attack data quickly and logically, free from the constraints of cost, time, and original cyber-attack data required in existing research.

4.
Sensors (Basel) ; 22(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35271043

RESUMO

Rapid and tremendous advances in wireless technology, miniaturization, and Internet of things (IoT) technology have brought significant development to vehicular ad hoc networks (VANETs). VANETs and IoT together play a vital role in the current intelligent transport system (ITS). However, a VANET is highly vulnerable to various security attacks due to its highly dynamic, decentralized, open-access medium, and protocol-design-related concerns. Regarding security concerns, a black hole attack (BHA) is one such threat in which the control or data packets are dropped by the malicious vehicle, converting a safe path/link into a compromised one. Dropping data packets has a severe impact on a VANET's performance and security and may cause road fatalities, accidents, and traffic jams. In this study, a novel solution called detection and prevention of a BHA (DPBHA) is proposed to secure and improve the overall security and performance of the VANETs by detecting BHA at an early stage of the route discovery process. The proposed solution is based on calculating a dynamic threshold value and generating a forged route request (RREQ) packet. The solution is implemented and evaluated in the NS-2 simulator and its performance and efficacy are compared with the benchmark schemes. The results showed that the proposed DPBHA outperformed the benchmark schemes in terms of increasing the packet delivery ratio (PDR) by 3.0%, increasing throughput by 6.15%, reducing the routing overhead by 3.69%, decreasing the end-to-end delay by 6.13%, and achieving a maximum detection rate of 94.66%.

5.
Sensors (Basel) ; 22(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336373

RESUMO

With information systems worldwide being attacked daily, analogies from traditional warfare are apt, and deception tactics have historically proven effective as both a strategy and a technique for Defense. Defensive Deception includes thinking like an attacker and determining the best strategy to counter common attack strategies. Defensive Deception tactics are beneficial at introducing uncertainty for adversaries, increasing their learning costs, and, as a result, lowering the likelihood of successful attacks. In cybersecurity, honeypots and honeytokens and camouflaging and moving target defense commonly employ Defensive Deception tactics. For a variety of purposes, deceptive and anti-deceptive technologies have been created. However, there is a critical need for a broad, comprehensive and quantitative framework that can help us deploy advanced deception technologies. Computational intelligence provides an appropriate set of tools for creating advanced deception frameworks. Computational intelligence comprises two significant families of artificial intelligence technologies: deep learning and machine learning. These strategies can be used in various situations in Defensive Deception technologies. This survey focuses on Defensive Deception tactics deployed using the help of deep learning and machine learning algorithms. Prior work has yielded insights, lessons, and limitations presented in this study. It culminates with a discussion about future directions, which helps address the important gaps in present Defensive Deception research.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Algoritmos , Enganação
6.
Sensors (Basel) ; 18(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518061

RESUMO

Smart homes can improve the quality of life and be implemented by Internet of Things (IoT) technologies. However, security is a very important issue in smart homes. For this reason, we propose a secrecy transmission protocol for primary user (PU) by selecting friendly jammer in cognitive IoT model. In particular, a secondary transmitter (ST) is selected to transmit secondary signals by the PU's frequency spectrum, while another ST is chosen to transmit artificial noise to protect the transmission confidentiality of the PU against eavesdropping. Moreover, two selection schemes are presented to confirm the former and the latter ST, and the goal is to optimize the secondary transmission performance and the primary security performance, respectively. For the non-security model and the proposed protocol, we derive the closed-form expressions of the intercept probability and the outage probability for the PU. We also obtain the closed-form expression of outage probability for the secondary user. The numerical results show that the security performance of the PU is significantly enhanced in our protocol compared to the non-security model. In addition, the outage performance of the secondary users is also improved in high secondary transmit SNR region.

7.
Sensors (Basel) ; 18(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890704

RESUMO

The Internet of Things (IoT) utilizes algorithms to facilitate intelligent applications across cities in the form of smart-urban projects. As the majority of devices in IoT are battery operated, their applications should be facilitated with a low-power communication setup. Such facility is possible through the Low-Power Wide-Area Network (LPWAN), but at a constrained bit rate. For long-range communication over LPWAN, several approaches and protocols are adopted. One such protocol is the Long-Range Wide Area Network (LoRaWAN), which is a media access layer protocol for long-range communication between the devices and the application servers via LPWAN gateways. However, LoRaWAN comes with fewer security features as a much-secured protocol consumes more battery because of the exorbitant computational overheads. The standard protocol fails to support end-to-end security and perfect forward secrecy while being vulnerable to the replay attack that makes LoRaWAN limited in supporting applications where security (especially end-to-end security) is important. Motivated by this, an enhanced LoRaWAN security protocol is proposed, which not only provides the basic functions of connectivity between the application server and the end device, but additionally averts these listed security issues. The proposed protocol is developed with two options, the Default Option (DO) and the Security-Enhanced Option (SEO). The protocol is validated through Burrows⁻Abadi⁻Needham (BAN) logic and the Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. The proposed protocol is also analyzed for overheads through system-based and low-power device-based evaluations. Further, a case study on a smart factory-enabled parking system is considered for its practical application. The results, in terms of network latency with reliability fitting and signaling overheads, show paramount improvements and better performance for the proposed protocol compared with the two handshake options, Pre-Shared Key (PSK) and Elliptic Curve Cryptography (ECC), of Datagram Transport Layer Security (DTLS).

8.
Sensors (Basel) ; 17(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186072

RESUMO

As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks' survivability, in terms of anti-interference, network energy saving, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA